/****************************************************************************** * [ maze ] ... * * modified: [ 1-04-00 ] Johannes Keukelaar * Added -ignorant option (not the default) to remove knowlege * of the direction in which the exit lies. * * modified: [ 6-28-98 ] Zack Weinberg * * Made the maze-solver somewhat more intelligent. There are * three optimizations: * * - Straight-line lookahead: the solver does not enter dead-end * corridors. This is a win with all maze generators. * * - First order direction choice: the solver knows where the * exit is in relation to itself, and will try paths leading in * that direction first. This is a major win on maze generator 1 * which tends to offer direct routes to the exit. * * - Dead region elimination: the solver already has a map of * all squares visited. Whenever it starts to backtrack, it * consults this map and marks off all squares that cannot be * reached from the exit without crossing a square already * visited. Those squares can never contribute to the path to * the exit, so it doesn't bother checking them. This helps a * lot with maze generator 2 and somewhat less with generator 1. * * Further improvements would require knowledge of the wall map * as well as the position of the exit and the squares visited. * I would consider that to be cheating. Generator 0 makes * mazes which are remarkably difficult to solve mechanically -- * even with these optimizations the solver generally must visit * at least two-thirds of the squares. This is partially * because generator 0's mazes have longer paths to the exit. * * modified: [ 4-10-97 ] Johannes Keukelaar * Added multiple maze creators. Robustified solver. * Added bridge option. * modified: [ 8-11-95 ] Ed James * added fill of dead-end box to solve_maze while loop. * modified: [ 3-7-93 ] Jamie Zawinski * added the XRoger logo, cleaned up resources, made * grid size a parameter. * modified: [ 3-3-93 ] Jim Randell * Added the colour stuff and integrated it with jwz's * screenhack stuff. There's still some work that could * be done on this, particularly allowing a resource to * specify how big the squares are. * modified: [ 10-4-88 ] Richard Hess ...!uunet!cimshop!rhess * [ Revised primary execution loop within main()... * [ Extended X event handler, check_events()... * modified: [ 1-29-88 ] Dave Lemke lemke@sun.com * [ Hacked for X11... * [ Note the word "hacked" -- this is extremely ugly, but at * [ least it does the job. NOT a good programming example * [ for X. * original: [ 6/21/85 ] Martin Weiss Sun Microsystems [ SunView ] * ****************************************************************************** Copyright 1988 by Sun Microsystems, Inc. Mountain View, CA. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Sun or MIT not be used in advertising or publicity pertaining to distribution of the software without specific prior written permission. Sun and M.I.T. make no representations about the suitability of this software for any purpose. It is provided "as is" without any express or implied warranty. SUN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SUN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *****************************************************************************/ /* * ported to Plan 9 by andrey@lanl.gov, 08/02 */ /* plan9-related stuff */ #include #include #include #include #define NULL nil #define XPoint Point #define NRAND nrand #define LRAND lrand #define random rand #define MAXRAND ((2<<31)-1) #define MAX(a, b) (((a) > (b))?(a):(b)) #define MIN(a, b) (((a) < (b))?(a):(b)) #define RAND_MAX MAXRAND #define ABS abs Image *colors[256]; #define M_PI PI #define Bool int #define True 1 #define False 0 Image *liveColor, *deadColor, *skipColor, *surroundColor; Image *glenda; char *buttons[] = { "exit", 0 }; Menu menu = { buttons }; Mouse m; /* end of plan9-related defines */ #define XSCREENSAVER_LOGO static int solve_delay, pre_solve_delay, post_solve_delay; #define MAX_MAZE_SIZE_X 500 #define MAX_MAZE_SIZE_Y 500 #define MOVE_LIST_SIZE (MAX_MAZE_SIZE_X * MAX_MAZE_SIZE_Y) #define NOT_DEAD 0x8000 #define SOLVER_VISIT 0x4000 #define START_SQUARE 0x2000 #define END_SQUARE 0x1000 #define WALL_TOP 0x8 #define WALL_RIGHT 0x4 #define WALL_BOTTOM 0x2 #define WALL_LEFT 0x1 #define WALL_ANY 0xF #define DOOR_IN_TOP 0x800 #define DOOR_IN_RIGHT 0x400 #define DOOR_IN_BOTTOM 0x200 #define DOOR_IN_LEFT 0x100 #define DOOR_IN_ANY 0xF00 #define DOOR_OUT_TOP 0x80 #define DOOR_OUT_RIGHT 0x40 #define DOOR_OUT_BOTTOM 0x20 #define DOOR_OUT_LEFT 0x10 #define border_x (0) #define border_y (0) #define get_random(x) (random() % (x)) static int logo_x, logo_y; # define logo_width 48 # define logo_height 48 static unsigned short maze[MAX_MAZE_SIZE_X][MAX_MAZE_SIZE_Y]; static struct { unsigned char x; unsigned char y; unsigned char dir, ways; } move_list[MOVE_LIST_SIZE], save_path[MOVE_LIST_SIZE], path[MOVE_LIST_SIZE]; static int maze_size_x, maze_size_y; static int sqnum, cur_sq_x, cur_sq_y, path_length; static int start_x, start_y, start_dir, end_x, end_y, end_dir; static int grid_width, grid_height; static int bw; static int x = 0, y = 0, restart = 0, stop = 0, state = 1, max_length; static int sync_p, bridge_p, ignorant_p; static void set_maze_sizes (int width, int height) { maze_size_x = width / grid_width; maze_size_y = height / grid_height; } static void initialize_maze (void) /* draw the surrounding wall and start/end squares */ { register int i, j, wall; int logow = 1 + logo_width / grid_width; int logoh = 1 + logo_height / grid_height; /* initialize all squares */ for ( i=0; i> wall ); maze[i][j] &= ~( WALL_TOP >> wall ); cur_sq_x = i; cur_sq_y = j; start_x = i; start_y = j; start_dir = wall; sqnum = 0; /* set end square */ wall = (wall + 2)%4; switch (wall) { case 0: i = get_random(maze_size_x); j = 0; break; case 1: i = maze_size_x - 1; j = get_random(maze_size_y); break; case 2: i = get_random(maze_size_x); j = maze_size_y - 1; break; case 3: i = 0; j = get_random(maze_size_y); break; } maze[i][j] |= END_SQUARE; maze[i][j] |= ( DOOR_OUT_TOP >> wall ); maze[i][j] &= ~( WALL_TOP >> wall ); end_x = i; end_y = j; end_dir = wall; /* set logo */ if ((maze_size_x-logow >= 6) && (maze_size_y-logoh >= 6)) { /* not closer than 3 grid units from a wall */ logo_x = get_random (maze_size_x - logow - 5) + 3; logo_y = get_random (maze_size_y - logoh - 5) + 3; for (i=0; i=3 && logow>=3) { bridge_dir = 1+random()%2; if(bridge_dir==1) { bridge_c = logo_y+random()%(logoh-2)+1; } else { bridge_c = logo_x+random()%(logow-2)+1; } } else { bridge_dir = 0; bridge_c = -1; } for(x = logo_x; x < logo_x+logow; x++) for(y = logo_y; y < logo_y+logoh; y++) { /* I should check for the bridge here, except that I join the * bridge together below. */ hedges[2*(x+maze_size_x*y)+1] = -1; hedges[2*(x+maze_size_x*y)] = -1; } for(x = logo_x; x < logo_x+logow; x++) { if(!(bridge_dir==2 && x==bridge_c)) { build_wall(x, logo_y, 0); build_wall(x, logo_y+logoh, 0); } hedges[2*(x+maze_size_x*(logo_y-1))] = -1; if(bridge_dir==1) { build_wall(x, bridge_c, 0); build_wall(x, bridge_c, 2); } } for(y = logo_y; y < logo_y+logoh; y++) { if(!(bridge_dir==1 && y==bridge_c)) { build_wall(logo_x, y, 3); build_wall(logo_x+logow, y, 3); } hedges[2*(logo_x-1+maze_size_x*y)+1] = -1; if(bridge_dir==2) { build_wall(bridge_c, y, 1); build_wall(bridge_c, y, 3); } } /* Join the whole bridge together. */ if(bridge_p) { if(bridge_dir==1) { x = logo_x-1; y = bridge_c; for(i = logo_x; i < logo_x+logow+1; i++) join_sets(x+y*maze_size_x, i+y*maze_size_x); } else { y = logo_y-1; x = bridge_c; for(i = logo_y; i < logo_y+logoh+1; i++) join_sets(x+y*maze_size_x, x+i*maze_size_x); } } } for(i = 0; i < maze_size_x*maze_size_y*2; i++) { t = hedges[i]; r = random()%(maze_size_x*maze_size_y*2); hedges[i] = hedges[r]; hedges[r] = t; } } /* Get the representative of a set. */ static int get_set(int num) { int s; if(sets[num]==num) return num; else { s = get_set(sets[num]); sets[num] = s; return s; } } /* Join two sets together. */ static void join_sets(num1, num2) int num1, num2; { int s1, s2; s1 = get_set(num1); s2 = get_set(num2); if(s1>1)%maze_size_x; y = (h>>1)/maze_size_x; v = x; w = y; switch(dir) { case 1: v++; break; case 2: w++; break; } if(get_set(x+y*maze_size_x)!=get_set(v+w*maze_size_x)) { join_sets(x+y*maze_size_x, v+w*maze_size_x); /* Don't draw the wall. */ } else { /* Don't join the sets. */ build_wall(x, y, dir); } } /* Free some memory. */ exit_sets(); } /* First alternative maze creator: Pick a random, empty corner in the maze. * Pick a random direction. Draw a wall in that direction, from that corner * until we hit a wall. Option: Only draw the wall if it's going to be * shorter than a certain length. Otherwise we get lots of long walls. */ static void alt_create_maze(void) { char *corners; int *c_idx; int i, j, height, width, open_corners, k, dir, x, y; height = maze_size_y+1; width = maze_size_x+1; /* Allocate and clear some mem. */ corners = (char *)calloc(height*width, 1); if(!corners) return; /* Set up the indexing array. */ c_idx = (int *)malloc(sizeof(int)*height*width); if(!c_idx) { free(corners); return; } for(i = 0; i < height*width; i++) c_idx[i] = i; for(i = 0; i < height*width; i++) { j = c_idx[i]; k = random()%(height*width); c_idx[i] = c_idx[k]; c_idx[k] = j; } /* Set up some initial walls. */ /* Outside walls. */ for(i = 0; i < width; i++) { corners[i] = 1; corners[i+width*(height-1)] = 1; } for(i = 0; i < height; i++) { corners[i*width] = 1; corners[i*width+width-1] = 1; } /* Walls around logo. In fact, inside the logo, too. */ /* Also draw the walls. */ if(logo_x!=-1) { int logow = 1 + logo_width / grid_width; int logoh = 1 + logo_height / grid_height; int bridge_dir, bridge_c; if(bridge_p && logoh>=3 && logow>=3) { bridge_dir = 1+random()%2; if(bridge_dir==1) { bridge_c = logo_y+random()%(logoh-2)+1; } else { bridge_c = logo_x+random()%(logow-2)+1; } } else { bridge_dir = 0; bridge_c = -1; } for(i = logo_x; i <= logo_x + logow; i++) { for(j = logo_y; j <= logo_y + logoh; j++) { corners[i+width*j] = 1; } } for(x = logo_x; x < logo_x+logow; x++) { if(!(bridge_dir==2 && x==bridge_c)) { build_wall(x, logo_y, 0); build_wall(x, logo_y+logoh, 0); } if(bridge_dir==1) { build_wall(x, bridge_c, 0); build_wall(x, bridge_c, 2); } } for(y = logo_y; y < logo_y+logoh; y++) { if(!(bridge_dir==1 && y==bridge_c)) { build_wall(logo_x, y, 3); build_wall(logo_x+logow, y, 3); } if(bridge_dir==2) { build_wall(bridge_c, y, 1); build_wall(bridge_c, y, 3); } } /* Connect one wall of the logo with an outside wall. */ if(bridge_p) dir = (bridge_dir+1)%4; else dir = random()%4; switch(dir) { case 0: x = logo_x+(random()%(logow+1)); y = logo_y; break; case 1: x = logo_x+logow; y = logo_y+(random()%(logoh+1)); break; case 2: x = logo_x+(random()%(logow+1)); y = logo_y+logoh; break; case 3: x = logo_x; y = logo_y+(random()%(logoh+1)); break; } do { corners[x+width*y] = 1; switch(dir) { case 0: build_wall(x-1, y-1, 1); y--; break; case 1: build_wall(x, y, 0); x++; break; case 2: build_wall(x, y, 3); y++; break; case 3: build_wall(x-1, y-1, 2); x--; break; } } while(!corners[x+width*y]); if(bridge_p) { dir = (dir+2)%4; switch(dir) { case 0: x = logo_x+(random()%(logow+1)); y = logo_y; break; case 1: x = logo_x+logow; y = logo_y+(random()%(logoh+1)); break; case 2: x = logo_x+(random()%(logow+1)); y = logo_y+logoh; break; case 3: x = logo_x; y = logo_y+(random()%(logoh+1)); break; } do { corners[x+width*y] = 1; switch(dir) { case 0: build_wall(x-1, y-1, 1); y--; break; case 1: build_wall(x, y, 0); x++; break; case 2: build_wall(x, y, 3); y++; break; case 3: build_wall(x-1, y-1, 2); x--; break; } } while(!corners[x+width*y]); } } /* Count open gridpoints. */ open_corners = 0; for(i = 0; i < width; i++) for(j = 0; j < height; j++) if(!corners[i+width*j]) open_corners++; /* Now do actual maze generation. */ while(open_corners>0) { for(i = 0; i < width*height; i++) { if(!corners[c_idx[i]]) { x = c_idx[i]%width; y = c_idx[i]/width; /* Choose a random direction. */ dir = random()%4; k = 0; /* Measure the length of the wall we'd draw. */ while(!corners[x+width*y]) { k++; switch(dir) { case 0: y--; break; case 1: x++; break; case 2: y++; break; case 3: x--; break; } } if(k<=max_length) { x = c_idx[i]%width; y = c_idx[i]/width; /* Draw a wall until we hit something. */ while(!corners[x+width*y]) { open_corners--; corners[x+width*y] = 1; switch(dir) { case 0: build_wall(x-1, y-1, 1); y--; break; case 1: build_wall(x, y, 0); x++; break; case 2: build_wall(x, y, 3); y++; break; case 3: build_wall(x-1, y-1, 2); x--; break; } } } } } } /* Free some memory we used. */ free(corners); free(c_idx); } /* The original maze creator. Start somewhere. Take a step in a random * direction. Keep doing this until we hit a wall. Then, backtrack until * we find a point where we can go in another direction. */ static void create_maze (void) /* create a maze layout given the initialized maze */ { register int i, newdoor = 0; int logow = 1 + logo_width / grid_width; int logoh = 1 + logo_height / grid_height; /* Maybe we should make a bridge? */ if(bridge_p && logo_x>=0 && logow>=3 && logoh>=3) { int bridge_dir, bridge_c; bridge_dir = 1+random()%2; if(bridge_dir==1) { if(logoh>=3) bridge_c = logo_y+random()%(logoh-2)+1; else bridge_c = logo_y+random()%logoh; } else { if(logow>=3) bridge_c = logo_x+random()%(logow-2)+1; else bridge_c = logo_x+random()%logow; } if(bridge_dir==1) { for(i = logo_x; i < logo_x+logow; i++) { maze[i][bridge_c] &= ~DOOR_IN_TOP; } } else { for(i = logo_y; i < logo_y+logoh; i++) { maze[bridge_c][i] &= ~DOOR_IN_TOP; } } } do { move_list[sqnum].x = cur_sq_x; move_list[sqnum].y = cur_sq_y; move_list[sqnum].dir = newdoor; while ( ( newdoor = choose_door() ) == -1 ) { /* pick a door */ if ( backup() == -1 ) { /* no more doors ... backup */ return; /* done ... return */ } } /* mark the out door */ maze[cur_sq_x][cur_sq_y] |= ( DOOR_OUT_TOP >> newdoor ); switch (newdoor) { case 0: cur_sq_y--; break; case 1: cur_sq_x++; break; case 2: cur_sq_y++; break; case 3: cur_sq_x--; break; } sqnum++; /* mark the in door */ maze[cur_sq_x][cur_sq_y] |= ( DOOR_IN_TOP >> ((newdoor+2)%4) ); /* if end square set path length and save path */ if ( maze[cur_sq_x][cur_sq_y] & END_SQUARE ) { path_length = sqnum; for ( i=0; ir.min, Pt(border_x + grid_width * i, border_y)), addpt(screen->r.min, Pt(border_x + grid_width * (i+1) - 1, border_y)), Endsquare, Endsquare, 0, display->white, ZP); } if ((maze[i][maze_size_y - 1] & WALL_BOTTOM)) { // XDrawLine(dpy, win, gc, // border_x + grid_width * i, // border_y + grid_height * (maze_size_y) - 1, // border_x + grid_width * (i+1) - 1, // border_y + grid_height * (maze_size_y) - 1); line(screen, addpt(screen->r.min, Pt(border_x + grid_width * i, border_y+ grid_height * (maze_size_y) - 1)), addpt(screen->r.min, Pt(border_x + grid_width * (i+1) - 1, border_y + grid_height * (maze_size_y) - 1)), Endsquare, Endsquare, 0, display->white, ZP); } } for ( j=0; jr.min, Pt(border_x + grid_width * maze_size_x - 1, border_y + grid_height * j)), addpt(screen->r.min, Pt(border_x + grid_width * maze_size_x - 1, border_y + grid_height * (j+1) - 1)), Endsquare, Endsquare, 0, display->white, ZP); } if ( maze[0][j] & WALL_LEFT ) { // XDrawLine(dpy, win, gc, // border_x, // border_y + grid_height * j, // border_x, // border_y + grid_height * (j+1) - 1); line(screen, addpt(screen->r.min, Pt(border_x, border_y + grid_height * j)), addpt(screen->r.min, Pt(border_x, border_y + grid_height * (j+1) - 1)), Endsquare, Endsquare, 0, display->white, ZP); } } if (logo_x != -1) { unsigned int w= 48, h = 48; Point p; /* round up to grid size */ int ww = ((logo_width / grid_width) + 1) * grid_width; int hh = ((logo_height / grid_height) + 1) * grid_height; p = addpt(screen->r.min, Pt(border_x + 1 + grid_width * logo_x + ((ww - w) / 2), border_y + 1 + grid_height * logo_y + ((hh - h) / 2))); draw(screen, Rpt(p, addpt(p, Pt(48, 48))), glenda, nil, ZP); //draw(screen, screen->r, glenda, nil, ZP); } draw_solid_square (start_x, start_y, WALL_TOP >> start_dir, liveColor); draw_solid_square (end_x, end_y, WALL_TOP >> end_dir, liveColor); } static void draw_wall(int i, int j, int dir) /* draw a single wall */ { switch (dir) { case 0: // XDrawLine(dpy, win, gc, // border_x + grid_width * i, // border_y + grid_height * j, // border_x + grid_width * (i+1), // border_y + grid_height * j); line(screen, addpt(screen->r.min, Pt(border_x + grid_width * i, border_y + grid_height * j)), addpt(screen->r.min, Pt(border_x + grid_width * (i+1), border_y + grid_height * j)), Endsquare, Endsquare, 0, display->white, ZP); break; case 1: // XDrawLine(dpy, win, gc, // border_x + grid_width * (i+1), // border_y + grid_height * j, // border_x + grid_width * (i+1), // border_y + grid_height * (j+1)); line(screen, addpt(screen->r.min, Pt(border_x + grid_width * (i+1), border_y + grid_height * j)), addpt(screen->r.min, Pt(border_x + grid_width * (i+1), border_y + grid_height * (j+1))), Endsquare, Endsquare, 0, display->white, ZP); break; case 2: // XDrawLine(dpy, win, gc, // border_x + grid_width * i, // border_y + grid_height * (j+1), // border_x + grid_width * (i+1), // border_y + grid_height * (j+1)); line(screen, addpt(screen->r.min, Pt(border_x + grid_width *i, border_y + grid_height * (j+1))), addpt(screen->r.min, Pt(border_x + grid_width * (i+1), border_y + grid_height * (j+1))), Endsquare, Endsquare, 0, display->white, ZP); break; case 3: // XDrawLine(dpy, win, gc, // border_x + grid_width * i, // border_y + grid_height * j, // border_x + grid_width * i, // border_y + grid_height * (j+1)); line(screen, addpt(screen->r.min, Pt(border_x + grid_width * i, border_y + grid_height * j)), addpt(screen->r.min, Pt(border_x + grid_width * i, border_y + grid_height * (j+1))), Endsquare, Endsquare, 0, display->white, ZP); break; } if(sync_p) flushimage(display, 1); } /* Actually build a wall. */ static void build_wall(i, j, dir) int i, j, dir; { /* Draw it on the screen. */ draw_wall(i, j, dir); /* Put it in the maze. */ switch(dir) { case 0: maze[i][j] |= WALL_TOP; if(j>0) maze[i][j-1] |= WALL_BOTTOM; break; case 1: maze[i][j] |= WALL_RIGHT; if(i0) maze[i-1][j] |= WALL_RIGHT; break; } } static void draw_solid_square(int i, int j, /* draw a solid square in a square */ int dir, Image *c) { Rectangle r; Point p; switch (dir) { case WALL_TOP: // XFillRectangle(dpy, win, gc, // border_x + bw + grid_width * i, // border_y - bw + grid_height * j, // grid_width - (bw+bw), grid_height); p = addpt(screen->r.min, Pt(border_x + bw + grid_width * i, border_y - bw + grid_height * j)); r = Rpt(p, addpt(p, Pt(grid_width - (bw+bw), grid_height))); draw(screen, r, c, nil, ZP); break; case WALL_RIGHT: // XFillRectangle(dpy, win, gc, // border_x + bw + grid_width * i, // border_y + bw + grid_height * j, // grid_width, grid_height - (bw+bw)); p = addpt(screen->r.min, Pt(border_x + bw + grid_width * i, border_y + bw + grid_height * j)); r = Rpt(p, addpt(p, Pt(grid_width, grid_height - (bw+bw)))); draw(screen, r, c, nil, ZP); break; case WALL_BOTTOM: // XFillRectangle(dpy, win, gc, // border_x + bw + grid_width * i, // border_y + bw + grid_height * j, // grid_width - (bw+bw), grid_height); p = addpt(screen->r.min, Pt(border_x + bw + grid_width * i, border_y + bw + grid_height * j)); r = Rpt(p, addpt(p, Pt(grid_width - (bw+bw), grid_height))); draw(screen, r, c, nil, ZP); break; case WALL_LEFT: // XFillRectangle(dpy, win, gc, // border_x - bw + grid_width * i, // border_y + bw + grid_height * j, // grid_width, grid_height - (bw+bw)); p = addpt(screen->r.min, Pt(border_x - bw + grid_width * i, border_y + bw + grid_height * j)); r = Rpt(p, addpt(p, Pt(grid_width , grid_height- (bw+bw)))); draw(screen, r, c, nil, ZP); break; } flushimage(display, 1); } int longdeadend_p(int x1, int y1, int x2, int y2, int endwall) { int dx = x2 - x1, dy = y2 - y1; int sidewalls; sidewalls = endwall | (endwall >> 2 | endwall << 2); sidewalls = ~sidewalls & WALL_ANY; while((maze[x2][y2] & WALL_ANY) == sidewalls) { x2 += dx; y2 += dy; } if((maze[x2][y2] & WALL_ANY) == (sidewalls | endwall)) { endwall = (endwall >> 2 | endwall << 2) & WALL_ANY; while(x1 != x2 || y1 != y2) { x1 += dx; y1 += dy; draw_solid_square(x1, y1, endwall, skipColor); maze[x1][y1] |= SOLVER_VISIT; } return 1; } else return 0; } /* Find all dead regions -- areas from which the goal cannot be reached -- and mark them visited. */ void find_dead_regions(void) { int x, y, flipped; /* Find all not SOLVER_VISIT squares bordering NOT_DEAD squares and mark them NOT_DEAD also. Repeat until no more such squares. */ maze[start_x][start_y] |= NOT_DEAD; do { flipped = 0; for(x = 0; x < maze_size_x; x++) for(y = 0; y < maze_size_y; y++) if(!(maze[x][y] & (SOLVER_VISIT | NOT_DEAD)) && ( (x && (maze[x-1][y] & NOT_DEAD)) || (y && (maze[x][y-1] & NOT_DEAD)))) { flipped = 1; maze[x][y] |= NOT_DEAD; } for(x = maze_size_x-1; x >= 0; x--) for(y = maze_size_y-1; y >= 0; y--) if(!(maze[x][y] & (SOLVER_VISIT | NOT_DEAD)) && ( (x != maze_size_x-1 && (maze[x+1][y] & NOT_DEAD)) || (y != maze_size_y-1 && (maze[x][y+1] & NOT_DEAD)))) { flipped = 1; maze[x][y] |= NOT_DEAD; } } while(flipped); for (y = 0; y < maze_size_y; y++) for (x = 0; x < maze_size_x; x++) { if (maze[x][y] & NOT_DEAD) maze[x][y] &= ~NOT_DEAD; else if (!(maze[x][y] & SOLVER_VISIT)) { maze[x][y] |= SOLVER_VISIT; if((x < logo_x || x > logo_x + logo_width / grid_width) || (y < logo_y || y > logo_y + logo_height / grid_height)) { if (!maze[x][y] & WALL_ANY) { Point p; Rectangle r; // XFillRectangle(dpy, win, ugc, // border_x + bw + grid_width * x, // border_y + bw + grid_height * y, // grid_width - (bw+bw), grid_height - (bw+bw)); p = addpt(screen->r.min, Pt(border_x + bw + grid_width * x, border_y + bw + grid_height * y)); r = Rpt(p, addpt(p, Pt(grid_width - (bw+bw), grid_height- (bw+bw)))); draw(screen, r, surroundColor, nil, ZP); } else { if (! (maze[x][y] & WALL_LEFT)) draw_solid_square(x, y, WALL_LEFT, surroundColor); if (! (maze[x][y] & WALL_RIGHT)) draw_solid_square(x, y, WALL_RIGHT, surroundColor); if (! (maze[x][y] & WALL_TOP)) draw_solid_square(x, y, WALL_TOP, surroundColor); if (! (maze[x][y] & WALL_BOTTOM)) draw_solid_square(x, y, WALL_BOTTOM, surroundColor); } } } } flushimage(display, 1); } static void solve_maze (void) /* solve it with graphical feedback */ { int i, dir, from, x, y, ways, bt = 0; /* plug up the surrounding wall */ maze[end_x][end_y] |= (WALL_TOP >> end_dir); /* initialize search path */ i = 0; path[i].x = end_x; path[i].y = end_y; path[i].dir = 0; maze[end_x][end_y] |= SOLVER_VISIT; /* do it */ while (1) { if ( maze[path[i].x][path[i].y] & START_SQUARE ) return; if(restart) return; if(ecanmouse()) { m = emouse(); if(m.buttons&4) { if(emenuhit(3, &m, &menu) == 0) exits(0); } } if (solve_delay) sleep (solve_delay); if(!path[i].dir) { ways = 0; /* First visit this square. Which adjacent squares are open? */ for(dir = WALL_TOP; dir & WALL_ANY; dir >>= 1) { if(maze[path[i].x][path[i].y] & dir) continue; y = path[i].y - !!(dir & WALL_TOP) + !!(dir & WALL_BOTTOM); x = path[i].x + !!(dir & WALL_RIGHT) - !!(dir & WALL_LEFT); if(maze[x][y] & SOLVER_VISIT) continue; from = (dir << 2 & WALL_ANY) | (dir >> 2 & WALL_ANY); /* don't enter obvious dead ends */ if(((maze[x][y] & WALL_ANY) | from) != WALL_ANY) { if(!longdeadend_p(path[i].x, path[i].y, x, y, dir)) ways |= dir; } else { draw_solid_square(x, y, from, skipColor); maze[x][y] |= SOLVER_VISIT; } } } else ways = path[i].ways; /* ways now has a bitmask of open paths. */ if(!ways) goto backtrack; if (!ignorant_p) { x = path[i].x - start_x; y = path[i].y - start_y; /* choice one */ if(abs(y) <= abs(x)) dir = (x > 0) ? WALL_LEFT : WALL_RIGHT; else dir = (y > 0) ? WALL_TOP : WALL_BOTTOM; if(dir & ways) goto found; /* choice two */ switch(dir) { case WALL_LEFT: case WALL_RIGHT: dir = (y > 0) ? WALL_TOP : WALL_BOTTOM; break; case WALL_TOP: case WALL_BOTTOM: dir = (x > 0) ? WALL_LEFT : WALL_RIGHT; } if(dir & ways) goto found; /* choice three */ dir = (dir << 2 & WALL_ANY) | (dir >> 2 & WALL_ANY); if(dir & ways) goto found; /* choice four */ dir = ways; if(!dir) goto backtrack; found: ; } else { if(ways&WALL_TOP) dir = WALL_TOP; else if(ways&WALL_LEFT) dir = WALL_LEFT; else if(ways&WALL_BOTTOM) dir = WALL_BOTTOM; else if(ways&WALL_RIGHT) dir = WALL_RIGHT; else goto backtrack; } bt = 0; ways &= ~dir; /* tried this one */ y = path[i].y - !!(dir & WALL_TOP) + !!(dir & WALL_BOTTOM); x = path[i].x + !!(dir & WALL_RIGHT) - !!(dir & WALL_LEFT); /* advance in direction dir */ path[i].dir = dir; path[i].ways = ways; draw_solid_square(path[i].x, path[i].y, dir, liveColor); i++; path[i].dir = 0; path[i].ways = 0; path[i].x = x; path[i].y = y; maze[x][y] |= SOLVER_VISIT; continue; backtrack: if(i == 0) { print("Unsolvable maze.\n"); return; } if(!bt && !ignorant_p) find_dead_regions(); bt = 1; from = path[i-1].dir; from = (from << 2 & WALL_ANY) | (from >> 2 & WALL_ANY); draw_solid_square(path[i].x, path[i].y, from, deadColor); i--; } } /* * jmr additions for Jamie Zawinski's screensaver stuff, * note that the code above this has probably been hacked about in some * arbitrary way. */ void screenhack(void) { int size, root, generator, this_gen; root = 0; solve_delay = 5; pre_solve_delay = 2000; post_solve_delay = 4000; generator = -1; max_length = 5; bridge_p = 0; ignorant_p = 0; size = 5 + (random () % 20); grid_width = grid_height = size; bw = (size > 6 ? 3 : (size-1)/2); x = 0; y = 0; set_maze_sizes (Dx(screen->r), Dy(screen->r)); restart = root; sync_p = !(random() % 10); while (1) { /* primary execution loop [ rhess ] */ if(ecanmouse()) { m = emouse(); if(m.buttons&4) { if(emenuhit(3, &m, &menu) == 0) exits(0); } } if (restart || stop) goto pop; switch (state) { case 1: initialize_maze(); break; case 2: draw(screen, screen->r, display->black, nil, ZP); draw_maze_border(); flushimage(display, 1); break; case 3: this_gen = generator; if(this_gen<0 || this_gen>2) this_gen = random()%3; switch(this_gen) { case 0: create_maze(); break; case 1: alt_create_maze(); break; case 2: set_create_maze(); break; } flushimage(display, 1); break; case 4: sleep (pre_solve_delay); break; case 5: solve_maze(); break; case 6: sleep (post_solve_delay); state = 0 ; draw(screen, screen->r, display->black, nil, ZP); break; default: abort (); } ++state; pop: if (restart) { restart = 0; stop = 0; state = 1; set_maze_sizes (Dx(screen->r), Dy(screen->r)); draw(screen, screen->r, display->black, nil, ZP); flushimage(display, 1); sync_p = !(random() % 10); } } } void eresized(int new) { if(new && getwindow(display, Refnone) < 0) { sysfatal("can't reattach to window"); } //fprint(2, "sorry, cannot resize\n"); //exits(0); restart = 1; } void main(int argc, char **argv) { int fd; USED(argc, argv); srand(time(0)); if(initdraw(nil, nil, "maze") < 0) sysfatal("initdraw failed: %r"); liveColor = allocimage(display, Rect(0, 0, 1, 1), screen->chan, 1, DGreen); deadColor = allocimage(display, Rect(0, 0, 1, 1), screen->chan, 1, DRed); skipColor= allocimage(display, Rect(0, 0, 1, 1), screen->chan, 1, DMagenta); surroundColor= allocimage(display, Rect(0, 0, 1, 1), screen->chan, 1, DPaleblue); fd = open("/lib/face/48x48x4/g/glenda.1", OREAD); if(fd < 0) sysfatal("cannot open /lib/face/48x48x4/g/glenda.1: %r"); glenda = readimage(display, fd, 0); if(glenda == nil) sysfatal("cannot load glenda's image: %r"); draw(screen, screen->r, display->black, nil, ZP); flushimage(display, 1); einit(Emouse); eresized(0); screenhack(); }