
Spew's Plan 9 Front Concurrent C Extension

Benjamin Purcell (spew)
benjapurcell@gmail.com

ABSTRACT

The Plan 9 Front compilers extend the C programming language to
provide builtin CSP style concurrency operations. This paper describes
the usage and implementation of the extension.

1. Introduction and Motivation

Programming with CSP style concurrency is an essential part of the Plan 9 operating sys­
tem. Concurrent programs were originally written in Alef which had builtin concurrency
operations. When Alef was retired, a library was written to allow access to CSP opera­
tions from programs written in C (see thread(2)). However, there are a number of defi­
ciencies with thread(2): thread creation is inflexible, receiving or sending of multiple
channels requires an awkward definition of an array of structures, and the send/receive
operations are not type safe. This extension aims to address those concerns to make
threaded programs easier and safer to write without the need to maintain a separate
compiler infrastructure such as Alef. This document assumes familiarity with thread(2).

2. The Extension

The compiler extension provides for launching new threads and processes, declaring
and allocating storage for typed channels, and type safe sending and receiving from
channels. It also provides a new control structure for type safe sending or receiving of
multiple channels. The extension functions by making calls into the thread(2) library;
any program using the extension must include the <thread.h> header.

2.1. Thread and Process Creation

Threads and processes are created using the keywords coproc and cothread which
have the syntax of a function that takes two arguments. The first argument a function
application, and the second is an unsigned int that specifies the stack size for the pro­
cess or thread. The calls coproc and cothread return the resultant thread id.

int tid, pid
void fn(int arg1, double arg2, char *arg3);
...
tid = cothread(fn(a, b, c), 8192);
pid = coproc(fn(a, b, c), 8192);

The function passed to coproc and cothread can have any signature, though its
return value will not be used. Instead of applying the function to its arguments, the calls
of cothread and coproc tell the compiler to check the arguments to the function
and then compile a call into thread(2) to start the function in a new thread or process
with a memory allocated stack (see malloc(2)). Due to the type-checking, if a, b, and c,
are of an incompatible type to int, double, and char* respectively, then the exam­
ple above will not compile.

­ 2 ­

2.2. Channel Declarations

The extension reserves the character @ for declarations of typed channels. A typed chan­
nel has a type�referred to as the sending type�associated with it; only values of that
type may be sent or received from the channel. The @ symbol has the same precedence
as the pointer dereference * and serves a similar purpose. Thus

int @c;

declares c to be a channel for sending/receiving an int;

char *@c;

declares c to be a channel for sending/receiving a pointer to a char; and

int *(*@c[3])(int);

declares c to be an array of three channels for sending/receiving pointers to functions
that take an int and return a pointer to an int.

2.3. Channel Allocation

Once a channel is declared, it must be configured for use by applying the compiler
extension chanset to it. The usage is

int @c;
chanset(c, nelem);

Where nelem is an int that sets the number of values the channel can hold and whether
the channel is buffered or unbuffered. See chancreate in thread(2).

2.4. Channel Χperations

The compiler extension allows for sending into and receiving typed values from chan­
nels. The syntax for receiving a channel mimics that of channel declarations. That is, for
a channel for sending ints and an int as follows:

int @c, i;

the statement

i = @c;

receives an int from the channel c and assigns the value to i. More specifically, the
expression @c evaluates to the value retrieved from the channel via a call into the
thread(2) library.

A new binary operator @= is used to send into a channel. The left-hand side of the
expression must be a channel and the right-hand side�s type must match the type of the
sending value of the channel. Thus given

char *@c;

the statement

c @= "hello, world";

sends the string into the channel. The expression c @= val evaluates to an int: 1 on
success and -1 if the send was interrupted.

2.5. Sending/Receiving of Multiple Channels

Channel sending/receiving may be multiplexed on a single statement using a new con­
trol flow statement called the alt-switch. It is similar to a switch with the expression
value replaced by an @ character and the case keywords replaced by a new extension
keyword alt. Instead of constant expressions, each alt is labeled by potential

­ 3 ­

channel sends or receives. An optional default label handles the case where the underly­
ing doalt operation (see thread(2)) is interrupted.

int @ichan, @req, i;
char *@schan, *s;

s = "hello";
switch @{
alt i = @ichan:

print("%d\n", i);
...
break;

alt @req:
...
break;

alt schan @= s:
print("Sent hello\n");
...
break;

default:
print("Interrupted!\n");

}

In the example above three potential channel operations are multiplexed on one alt-
switch statement. Either an int is received from @ichan and assigned to i, an int is
received from @req and its value thrown away, or the string hello is sent into
schan. The operations are multiplexed in the sense that if at least one of those chan­
nel operations can proceed, one is chosen at random to be executed and control flow
proceeds after the corresponding alt label. Otherwise the alt-switch statement blocks
until one of the operations can proceed.

A non-blocking alt-switch statement is specified by using two @ symbols:

switch @@{
...

default:
print("No channel operations can proceed.\n");

}

In this case, the statement does not block if no channel operations can proceed, but
immediately continues execution at the default label. If a non-blocking alt-switch is
interrupted while in the middle of executing a valid channel operation, then the alt-
switch will continue execution at a case labeled by -1.

The channel send operation in an alt label is more restricted than an ordinary channel
send in the sense that the right hand side of the @= binary operator must be address­
able. Thus

alt ichan @= 5:

will not compile.

3. Summary of the Extension

In total the extension reserves the following new keywords or symbols

@ alt chanset cothread coproc

and defines the following new expressions:

­ 4 ­

Usage Summary__

Channel Χperations___
chanset(chan, nelem) Allocates and readies a channel___

chan @= val Channel Send___
@chan 






Channel dereference (receive)___
Alt-Switch___

switch @{...} Blocking alt-switch___
switch @@{...} Non-blocking alt-switch___
alt val = @chan: Alt label (receive)___

alt @chan: Alt label (receive, value thrown away)___
alt chan @= val: 










Alt label (send)___
Thread Creation___

coproc(fn(...), stksize) Starts a process in its own stack___
cothread(fn(...), stksize) Starts a thread in its own stack___


























































Figure 1. Summary of compiler extensions and usage. chan denotes a typed channel and val is of the

channel�s sending type. nelem is an int, fn is a function of any signature, and stksize is an unsigned int.

4. Implementation Details

The extension does two things: checks types and provides syntactic sugar for calls to
thread(2).

Threads and processes are created by walking the argument list and then compiling a
call to rtthreadcreate in thread(2). For example, given a call

cothread(fn(a, b, c), 1024);

the compiler first checks the types of the arguments to the function fn and then
rewrites the above as

rtthreadcreate(1024, 3, fn, a, b, c);

The library thread(2) takes things from there. A call of coproc is rewritten as a call to
rtproccreate in the exact same way.

Each channel declaration declares a new structure that holds both the channel and loca­
tions for sending and receiving values of the sending type of the channel. The channel
itself is declared as a pointer to that struct. Thus, a channel declaration such as

int @c;

is rewritten by the compiler as

struct {
Channel;
int @in;
int @out;

} *c;

In this rewrite the symbols @in and @out are not channels but the actual identifier
used internally by the compiler to access those members of the structure. They are only

­ 5 ­

accessible within the compiler since @ is reserved.

A more complicated type such as

int (*@*c[3])(int, double);

(an array of three pointers to a channel that returns pointers to function pointers),
becomes

struct {
Channel;
int (*@in)(int, double);
int (*@out)(int, double);

} **c[3];

In other words, if you read the declaration from the outer type inwards toward the sym­
bol, then everything before the @ symbol is associated with the sending type of the
channel and everything after is associated with the declaration of the the symbol chan
itself.

The call

chanset(c, nelem);

allocates memory for the channel and does further setup as needed for thread(2). It is
syntactic sugar for the call

c = rtchancreate(sizeof(*c), sizeof(c->@in), nelem);

where chan has already been defined by the compiler to have a structure type like the
examples above.

A channel receive operation val = @chan is rewritten as

recv(c, c->@out);
val = c->@out;

and in the case when there is no left hand side, then as

recv(c, c->@out);

alone. A channel send expression

c @= val;

is first type checked so that val is assignable to c->@in and then rewritten as

send(c, &val);

In the case where val is not addressable, such as

c @= val1 + val2;

then the compiler rewrites this as

c->@in = val1 + val2;
send(c, &c->@in);

The alt-switch statement is compiled by constructing an Alt structure (see thread(2))
and then rewriting the alt-switch as a normal switch with case labels corresponding to
the value returned by a doalt call (see thread(2)) with the Alt structure as an argu­
ment. The following

­ 6 ­

int @ichan, @req, i;
char *@schan, *s;

s = "hello";
switch @{
alt i = @ichan:

print("%d\n", i);
...
break;

alt @req:
...
break;

alt schan @= s:
print("Sent hello\n");
...
break;

default:
print("Interrupted!\n");

}

is rewritten by the compiler as

int @ichan, @req, i;
char *@schan, *s;

s = "hello";
struct Alt alts[] = {

{ichan, &i, CHANRCV},
{req, nil, CHANRCV},
{schan, &s, CHANSND},
{nil, nil, CHANEND}

};
switch(doalt(alts)) {
case 0:

print("%d\n", i);
...
break;

case 1:
...
break;

case 2:
print("Sent hello\n");
...
break;

default:
print("Interrupted!\n");

}

The appropriate type checking takes place on the values being sent or received in order
to preserve type safety.

