Hi Jeremy,
 
Your syntax extension is nice and simple enough.
It will really help in demystifying polymorphic recursion.
 
The provided examples are particularly usefull in understanding where polymorphic recursion matters.
 
My opinion is that polymorphic recursion is largeley overestimated and has little real-life use in a ML context.
 
Basically there are two usage patterns :
  1. the Okasaki/Paterson style
  2. the J.J.Hallett & A.J.Kfoury style
 
The J.J.Hallett & A.J.Kfoury style is just plain misuse of the rec keyword.
 
That is instead of  a wrong rec scope :
  let rec double : 'a . ('a -> 'a) -> 'a -> 'a
      = fun f y -> f (f y)
  and foo : 'x . int -> int
      = fun v -> double (fun x -> x + 1) v
  and goo : 'y . float -> float
      = fun w -> double sqrt w
  in (foo 3, goo 16.0)
 
One shoud use a correct rec scope : 
  let rec double f y =
    f (f y)
  in
let foo v =
    double (fun x -> x + 1) v
  and goo w =
    double sqrt w
  in (foo 3, goo 16.0)
 
Especially, OCaml beginner should be warned that polymorphic recursion is not a solution to their typing problems.
 
The Okasaki/Paterson style is more insteresting.
Basically it's a poor man's dependant types.
 
Instead of  :
 
   type 'a perfect = Leaf of 'a | Node of 'a perfect * 'a perfect
 
One does write :
 
   type 'a perfect = Zero of 'a | Succ of ('a * 'a) perfect
 
Then the compiler can statically check that the tree is always complete (perfectly balanced).
 
Problems are :
  1. functions are harder to type
  2. type errors are quite hard to interpret and to locate (although pa-polyrec certainly helps in this department)
  3. benchmarks show you pay a certain (small) price for the added type expressivity
 
In my opinion, when wants the added type expressivity he actually wants dependant types. 
I mean one should prefer the following Coq code, that is dependant types rather than nested data types :
 
  Variable A : Set.
 
  Inductive perfect : nat -> Set :=
  | Leaf : perfect O
  | Node : forall n, A -> perfect n -> perfect n -> perfect (S n).
 
The de Bruijn exemple is representative enough :
  1. either you seek after efficiency then nested data type will just hinder interpreter performance
  2. either you seek after interpreter validation then dependant types is the way to go
 
May be polymorphic recursion is actually a tool for the working ML programmer.
Yet i am still waiting to see the exemple that is more than a nice trick for the ML hacker. 
 
Hoping i have made the matter less esoteric to OCaml beginners,
Regards,

- damien
 
 

Damien Guichard
2009-09-29

En réponse au message
de : Jeremy Yallop
du : 2009-09-28 22:56:32
À : caml-list@inria.fr
CC :
Sujet : [Caml-list] ANN: pa_polyrec: syntax for polymorphic recursion
 
 
I'm pleased to announce the initial release of pa_polyrec, a syntax extension 
for polymorphic recursion in OCaml.
 
    https://forge.ocamlcore.org/projects/pa-polyrec/
 
There are several methods for encoding polymorphic-recursive functions in OCaml; 
this extension allows them to be written directly, using a natural syntax.  For 
example, given the following type of perfectly-balanced trees we might wish to 
write a function for summing the leaves.
 
   type 'a perfect = Zero of 'a | Succ of ('a * 'a) perfect
 
In standard OCaml such a function can be written as follows:
 
   let sump f =
     (object (o)
         method sump : 'a. ('a - > int) - > 'a perfect - > int =
           fun f - > function
            | Zero x - > f x
            | Succ x - > o#sump (fun (a, b) - > f a + f b) x
      end)#sump f
 
   let sum_perfect = sump id
 
Using pa_polyrec one can write the function in the following less obfuscated style:
 
   let rec sump : 'a. ('a - > int) - > 'a perfect - > int =
     fun f - > function
      | Zero x - > f x
      | Succ x - > sump (fun (a, b) - > f a + f b) x
 
   let sum_perfect = sump id
 
Note that the type variable 'a in the type of the function is quantified: this 
is what differentiates polymorphic-recursive functions from standard OCaml 
recursive function definitions.
 
More complex usage is supported, including mutual recursion.  A number of 
examples are included in the distribution, including several modules from Chris 
Okasaki's thesis "Purely Functional Data Structures" and code from Richard Bird 
and Ross Paterson's paper "de Bruijn notation as a nested datatype".
 
_______________________________________________
Caml-list mailing list. Subscription management:
http://yquem.inria.fr/cgi-bin/mailman/listinfo/caml-list
Archives: http://caml.inria.fr
Beginner's list: http://groups.yahoo.com/group/ocaml_beginners
Bug reports: http://caml.inria.fr/bin/caml-bugs