
TENSOR PRODUCTS OF ABELIAN GROUPS

By HASSLER WHITNEY

1. Introduction. Let G and H be Abelian groups. Their direct sum G @ H
consists of all pairs (g, h), with (g, h) q- (g’, h’) (g q- g’, h q- h’). If we con-
sider G and H as subgroups of G H, with elements g (g, 0) and h (0, h),
then we may form g -k h, and the ordinary laws of addition hold. Our object
in this paper is to construct a group G o H from G and H, in which we can form
g. h, with the properties of multiplication; that is, the distributive laws

(1.1) (g + g’).h g.h + g’.h, g.(h + h’) g.h -nt- g.h’

hold. Clearly G H must contain elements of the form gi. hi it turns out
(Theorem 1) that with these elements, assuming only (1.1), we obtain an Abelian
group, which we shall call the tensor product of G and H.
The tensor product is known in one important case;namely, in tensor analysis

(see 4, (b), and 11), though the definition in the form here given does not
seem to have been used. Certain other cases are known (see 4). We refer
to the examples there given for further indications of the scope of the theory.
A direct product of algebras has been constructed by J. L. Dorroh, by methods
closely allied to those of the present paper.
As is to be expected, we see in Part I that when we multiply several groups

together, the associative and commutative laws hold; also the distributive
laws with respect to direct sums and difference groups. The group of integers
plays the r61e of a unit group. The rest of Part I is devoted largely to a study
of the relation between groups with operator rings and tensor products;in par-
ticular, divisibility properties are considered.

In Part II, a detailed study of tensor products of linear spaces is made; we
now assume rg. h g. rh (r real). With any element a of G H are associated
subspaces G(a) of G and H(a) of H; their dimensions equal the minimum number
of terms in an expression gi. hi for a, and in this expression the g and hi form
bases in G(a) and H(a). The elementary operations of tensor algebra are
derived, and a direct manner of introducing covariant differentiation is indi-
cated. If the linear spaces are topological, a topology may be introduced into

Received February 23, 1938; presented to the American Mathematical Society, February
26, 1938. See Proceedings of the National Academy of Sciences, vol. 23(1937), p. 290.

This is so even if G and H are not Abelian; see Theorem 11. If G and H are linear or
topological, we use a slightly different definition.

J. L. Dorroh, Concerning the direct product of algebras, Annals of Mathematics, vol. 36
(1935), pp. 882-885. The author is indebted to the referee for pointing out this paper to him.

In linear spaces, the group of real numbers also is a unit.
Some of these results have been derived independently by H. E. Robbins.
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the tensor product. If the spaces are not of finite dimension, there are of course
various topologies possible in the product; the one we give is probably at an
extreme end, in that a neighborhood of 0 in any topology wil! contain a neighbor-
hood of the sort here given. The topology has certain defects in that the asso-
ciative and distributive laws seem not to hold in generalwith topology preserved.
In the case of Hilbert spaces, there is a natural definition of the topology in the
product (see Murray and yon Neumann, reference in 4, (c)). In the inter-
mediate case of Banach spaces, probably the norm al may be defined as the
lower bound of numbers _,lg, !1 h [for expressions g,. h of a.

In topological groups which contain denumerable dense sets, the product
may be given a topology, as is shown in Part III; it agrees with that in Part II
when both are defined. Again, in complicated groups, other topologies are
possible and perhaps preferable. Finally, for a more complete theory, one
must allow infinite sums g.h.

2. Notations. Write G H if G and H are isomorphic. The symbol 0
means the zero in any group, or the group with only the zero element. A B
is the set of elements in both A and B. ag (a an integer > 0) means g g
(aterms); (-a)g a(-g), Og O. g A is the set of all g g’, g’ in A
similarly for A + B. g. B is the set of all g. h, h in B, etc. aA all ag, g in A.
Note that 2A C A A, etc. Write a g if there is a g’ with ag’ g; g is then
"divisible" by the integer a. a A means a g for all g in A. G is "completely
divisible" if for every a O, a lG, i.e., aG G. The "nullifier" of H in G
(of G in H) is the set of all g (all h) such that g. h 0 for all h in H (all g in G).
Let ’* A denote the set of all finite sums al a, a in A, any k; this

is a subgroup of G (if A C G). * A is the set of all al -t- -t- a (a in A,
any k).

Let G H and G G’ denote direct sums and difference groups. There is a
"natural homomorphism" of G into G @ G’. Some particular groups we shall
use are" I0 group of integers;Ix I0 (R) I0 integers mod (with elements
a, for integral a); Rt rational numbers; R1 real numbers. Set G
GuG.

I. Discrete groups

3. Discrete tensor products. Let G and H be groups (not necessarily Abelian),
with the operation W. Let be the set of all symbols

(g, h g, h) (gi in G, hi in H, n any integer > 0).

We add two symbols by the rule

(gl, h ;... ) - (gn+l, h+l ;... (g, hi ;... ;g+, h+l ;...).

This definition was suggested to me by H. E. Robbins.
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Cearly - is associative. e may put any element of in the normal form
(gl, 1) - - (g, ); f we wrte

we obtain

Define two equivalence relations as follows"

(3.1) - (g - g’) h - + g h - g’ X h - ...,
(3.2) - g (h - h’) T W g h -t- g h’ -Any succession 31 s s we shall call an equivalence sequence between
31 and s. If two elements s, s’ are joined by an equivalence sequence, we say
they are equivalent, s s’. Let also s s. The elements of fall into subsets
under this relation; these form the elements of the discrete tensor product G o H.
In case G and H are discrete, we call this the tensor product, in agreement with
the definition in Part III. Let g.h g.h - be the element of G o H
containing the element g h of .
To define the group operation, which we temporarily call $, in G o H, take

any a and ,, and let Z , X h, and Z g X h be corresponding elements of
; we set

(.) - -’ : ,., + Z: ..
We must show that this is independent of the choices of s ’ g h and s
g X h. If we had chosen and t’, then there are equivalence sequences

joining s to and s to t; applying these sequences to g, X h, - g X h
shows that the same element a ( a is determined. Henceforth we use -t- instead
of . Note that T is associative, and (1.1) holds.
We prove in succession the following facts.

g.o (g + a g).O a.o + g.0 + (-g).o e.(o + o) + (-g).o
(a)

g.o + (-a).0 (a g).o 0.o;

similarly 0. h 0.0.

(b) g.h - 0.0 g.h - g.O g.(h - O) g.h,

and hence 0.0 g.0 0.h plays the rSle of the identity.

g.h g.h + O.(-h) g.h + g.(-h) + (-g).(-h)
(c)

a.0 + (-a)" (-h) (-a)" (-h).

Next, we may operate with the product as if G and H were Abelian. For

g.(h + h’) g.h + g.h’ (-g).(-h) + (-g).(-h’)
(d)

(-g). (-h h’) g. (h’ - h);
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similarly (g + g’). h (g’ -t- g)" h. Also

g.(h % h’ + h") g.h + g.(h’ + h") g.h + g.(h" + h’)

g. (h % h" + h’), etc.

Finally, the operation in G o H is commutative. For

c (g + g’).(h’ -+- h) g. (h’ + h) + g’.(h’ + h)

g.h’ k- g.h + g’.h’ + g’.h,

also

a (g + g’).h’ + (g -k- g’).h a.h’ + g’.h’ + g.h + g’.h,

and hence

(e) g.h -k- g’.h’ (-g).h’ + a -t-- (-g’).h g’.h’ + g.h.

Remark. We would have obtained the same results if we had replaced the
elementary equivalence relations by

+ (g+g’) h + +g’ h-+-g h + ...,etc.

THEOREM 1. G o H is an Abelian group; the identity is O 0 g 0 O h,
and the inverse of g. h is

(3.4) (g.h) (-g). h g. (-h).

The distributive laws (1.1) hold.
This follows from the above results. Because of (d), we henceforth assume

G and H are Abelian, except in Theorem 11.
THEOREM 2. In any G H, for any integer a,

(3.5) a(g. h) ag. h g. ah.

For instance,

(-2)g.h (-g g).h -[(g -+- g).h] -[g.h + g.h] (-2)(g.h).

Using the distributive laws, we may use summation signs as usual; for instance,

E (E aiigi).hi E E (aiigi.hi) E E (gi.aiihi) E (gi" E aiihi).

4. tiixamples. A system with both "addition" and "multiplication" may in
general be defined by starting with a system or systems, using addition alone,

For a direct proof, we have

g.h + g’.h’ g.h -t- g.h’ -+- (-g -t-- g’).h’ g.(h -t- h’) + (g’ g).(h + h’)
+ (g’ O).(-h) (O + g’ O).(h + h’) + g’.(-h) + (-g).(-h)

g’.(h -I-- h’- h) + g.h g’.h’+ g.h.
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forming a tensor product, and defining new equality relations. Specifically,
any group pair is an example.

(a) The Abelian groups G and H form a group pair with respect to the group
Z if a multiplication g h z is given, satisfying both distributive laws.
Any such group pair may be defined by choosing a homomorphism of G o H into Z.
Clearly

(E,.,) E, ,
has the required properties. Practically all further examples come under this
head.

(b) The most important example of a true tensor product (and the example
from which we chose the word "tensor") is probably the following. If G is the
tangent vector space at a point of a differentiable manifold, then G G is the
space of contravariant tensors of order 2 at the point. (Here G G is not the
discrete, but the reduced, or topological, tensor product; see Part II or Part III.
The same remark applies to other examples below.) Using also the "conjugate
space" L(G) and iterated tensor products gives tensors of all orders (see 11).
Of course these spaces are usually defined in terms of coSrdinate systems in G.
Note that in terms of a fixed coSrdinate system, G G gives" vector times

vector equals matrix. For a generalization, see (i) below.
(c) If G in (b) is replaced by Hilbert space, G o G is a Hilbert space, except

for the completeness postulate (which could be obtained by completing the space
or allowing certain infinite sums in G G).

(d) The true tensor product G H has also been used in case one of G, H has
a finite number of generators, and has been applied in topology, From the
examples (j) and Theorems 3 and 5 below, we may at once determine G o H
if both G and H have finite sets of generators.
The remaining examples are in general not true tensor products, but come

under the heading (a). The general case G H -- Z does not often occur.
The case Go G--Zappearsin (b). The casesGo H--HandGo G--G
appear in (e) and (g) below.

(e) If G is a group, with "operators" from the group R, i.e., r.g g’, the
distributive laws are generally assumed;we have R G -- G. Here one gener-
ally lets R be a ring (see 6).

(f) If G is a group and R is a ring, and we wish to form from G a group G*

See F. J. Murray and J. von Neumann, On rings of operators, Annals of Mathematics,
vol. 37(1936), pp. 116-229, Chapter I. As a bounded operator A in G corresponds uniquely
to an element f in G: A(g) (f, g), their space G (R) G corresponds to our G G. M.H.
Stone and J. W. Calkin have also considered a direct definition of G G such as we give.
Compare also M. Kerner, Abstract differential geometry, Compositio Mathematica, vol. 4
(1937), pp. 308-341.

See Alexandroff-Hopf, Topologie I, pp. 585-586 and p. 233, (15), and H. Freudenthal
Fundamenta Mathematicae, vol. 29(1937). The definition of G H is indirect. The case
that one of G, H is a free group has been studied by H. Freudenthal, Compositio Mathe-
matica, vol. 4(1937), pp. 145-234, Chapter III.
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which "admits" R as operator ring, we need merely use G* R o G (see Theorem
12 below). If we wish to replace G by a group G* in which division by any
integer 0 is possible and unique, we use G* Rto G (see 8).

(g) If G is a group, any choice of G o G -- G makes G a ring (in general non-
associative), and conversely.

(h) Let V,, Vq and Vr be linear spaces (= vector spaces) of dimensions p,
q and r. Set G Chr(Vp) (= group of linear maps of Vp into Vq), H Chr,
(Vq), Z Chr,(V). Obviously, we have G H -- Z. G, H, Z, and G H are
vector spaces of dimensions pq, qr, pr, and pqr. Hence Z G o H is possible
only if q 1, i.e., Vq R1. In this case it is true, as shown by (10.7) and
(10.11) below. If we choose fixed coSrdinate systems in V, Vq and Vr, then
G, H and Z may be interpreted as groups of matrices.

(i) If G H is the (additive) group of continuous functions g(x), 0 <- x <= 1,
we may interpret G o H as a subgroup of the group of continuous functions
z(x, y), 0 _-< x -< 1, 0 -< y _-< 1, with g.h corresponding to z(x, y) g(x)h(y).
As is well known from the theory of integral equations, if we allow infinite sums,
we may obtain all continuous functions z(x, y).

(j) Finally, we give some examples of tensor products, using the groups most
commonly used as coefficient groups in topology. Let Rtl and Rll be Rt and Rl
reduced rood 1.

I0 G G, Ix G G (Theorems 7, 8),

I o I I(,)

Io Rt Ixo R1 Ixo Rtl Ixo Rl 0 (U 0),

Rto Rt Rt, Rto R1 Rlo Rl R1,

Rt Rtl Rt o Rl Rt Rt, etc., 0.

5. General properties.
properties.
THEOREM 3.

(5.1)

THEOREM 4.

We first consider commutative and associative

There is a natural isomorphism G H H G, given by

(E ,’,) E ,’,.

There are natural isomorphisms

Fo (Go H) Fo Go H (Fo G) H,

where F G H is the group of all f.g. h, using the three distributive laws.
The isomorphisms are given by

(.) (E’,.,.) E (f,’,)’,, (Ef,.,.,)
The first theorem is evident; we prove the second, using . The definition

of is unique, as any equivalence relation in the f.g.h corresponds to one
in the (f.g).h. If (f.g.h) O, then an equivalence sequence carries
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_(f.g).h into 0; a corresponding sequence carries f.g. hi into 0; hence is
an isomorphism into a subgroup of (F G) H. Finally, given any

E E (E s,;. E
in (F o G) H, carries Y]fj.gi.h into it. This completes the proof.
Next we prove the distributive laws with respect to direct sums and difference

groups.
THEOREM 5. There is a natural isomorphism

(FG) oH=FoHGoH,

given by

[(fl gl) hi q- + (f, g,,) h,]
(5.3)

=(.hl + -[- f,.h,, gl.hl + + g,,.h,,).

To show that is uniquely defined, we have, for instance, as (f, g) + (f’, gr)
(f +f’,g

[... + (f, g).h + (f’, g’).h +...
(... -Jr-f.h -k-f’.h -t- "..,... q- g.h + g’.h +
(... + (f+f’).h +...,... + (g q-g’).hq-...)

[... q- {(/, g) + (/’, g’)l.h -+-...].

maps the first group into the whole of the second;for

(5.4) [(fl,0).hx q- -t- (0, gl).h’l + ...] (fl.hl+ ..-,gl.h;+ ...).

Clearly is a homomorphism. Now suppose (a) 0; let a be given as in
(5.3). First, we may transform a into the form of the left side of (5.4). For
each half of the right side of (5.3), there is an equivalence sequence carrying it
into 0. There are corresponding sequences acting on the left side of (5.4),
which shows that a 0. Hence is an isomorphism.
THEOREM 6. If G’ is a subgroup of G, there is a natural isomorphism

(G G’) o H Go H * (G’.H),

given as follows. If b and q are the natural homomorphisms of G into G ( G’
and of G H into G H *(G’.H), we set

(5.5) [(gl).hl + + (gn).h,] I’(gl.hl + + g,.h,).

By Theorem 3, there is a similar relation with G and H interchanged.
To show that is uniquely defined, suppose first that (gl) k(01). Then

01 gl + g’ (g’ in G’), and

’I’(01.hl -k- ) (gl. hl -t- ) -Jr" (g’ hl) (gl. h + ).
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The rest of the proof is like previous proofs. For instance, if the element (5.5)
vanishes, then g.h is in _*(G’. H), and hence may be transformed into the
form g.h (g in G’). The same transformations may be carried out on the
left side of (5.5); as (g) 0, this gives ’(g).h 0.

Remark. *(G’. H) is perhaps "smaller" than G H; for instance, if G I0,
G’ 2G, H Is, then G’ H Is, *(G.H) O. But there is a natural
homomorphism of G’ H onto the whole of *(G’. H), clearly. Compare Theorem
28, Part II.
THEOREM 7. There is a natural isomorphism Io G G, given by

(5.6) (. a,.g,) a,g,.

The proof is like previous proofs. Note that we have a normal form for
elements of I0 G" if we use Theorem 2,

(5.7) E a,.g,- E 1.a,g,-- 1. E a,g, 1.g’.

The expression of an element in the normal form is unique, by the theorem.
THEOREM 8. There is a natural isomorphism I, G G, given by

g,.(5.8) (Z a’g) Z at

Using Theorems 6 and 7, we see easily that the following isomorphism is the
one given by the theorem"

I, o G (Io @ #Io) o G Io G @ * (,Io.G)

Ioo G *(Io.tG) Ioo (G tG)

TEOaEM 9. If G is completely divisible and every element of H is of finite
order, then G o H O.
For if mh O, then g.h mg’.h g’.mh O.
THEOREM 10. If G’ and H’ are subgroups of the nullifiers of H and G in G and

H, respectively, then there are natural isomorphisms

Go H (G @ G’)o H Go (H’ H) (G G’)o (g @ H’);

if and are the natural isomorphisms of G into G G’ and of H into H H’,
these are given by

First, applying Theorem 6, we find, as G’. H O,

Go H Go H @ *(e’.s) (G @ G’)o H, etc.

Next, for any h’ in H’, (g). h’ corresponds to g. h’ 0 in the first isomorphism
above; hence (G @ G’). H’ 0, and

(G G’) o H (e @ e’) H @ * ((G G’).H’) (G @ G’)o (H @ H’).

g is the element of G corresponding to g in G.
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We end by showing that the discrete tensor product of any two groups, not
necessarily Abelian, is isomorphic to the discrete tensor product of the two
groups "made Abelian".
THEOREM 11. Let G and H be any two groups, and let G’ and H’ be their com-

mutator subgroups. Then there is a natural isomorphism

Go H (G @ G’)o (H e H’).

Because of Theorem 10, we need merely show that any commutator is in the
nullifier of the other group;this follows at once from 3, (d).

6. Sets, groups, tings, operators. If A and B are two sets of elements, we
may define their (discrete) tensor product as the set of all symbols 4-al. bl 4-

4-a,.b,, with the obvious definition of , which we assume commutative.
This is a free group, generated by all a. b; if A and B have m and n elements,
respectively, then A o B has mn generators.

If G is an Abelian group and A is a set of elements, their tensor product is the
set of all g.a, with the distributive law as in (3.1), postulating that is
commutative, and O.a + g.a’ g.a’. This is the "group of all linear forms
over elements of A, with coefficients in G". An example is given by the groups
of chains used in topology.
We shall say an Abelian group G admits the ring R as operator ring, or admits

R simply, if R has a unit 1, and rg g’ is defined satisfying

r(g + g’) rg + rg’, (r d- r’)g rg + r’g,
(6.1)

r(r’g) (rr’)g or (r’r)g, lg g.

We call R a left or right operator according as we use (rr’)g or (r’r)g in the third
relation. In the second case, we might write gr in place of rg, obtaining (gr’)r
g(r’r). Suppose, for definiteness, we write r[g] instead of rg. Then a ring can
operate on itself in both ways, using

(6.2) r [rq rr’ and r [r’] r’r.

The associative law r[r’[r"]] (r[r’])[r"] holds in either case.
If G and H both admit R, to left or right, we say an isomorphism between

G and H is an operator isomorphism if (rg) re(g); we use again, and say
preserves the operator.
THEOREM 12. If R is a ring with unit, and we define R o G, considering R

as a group under addition, then R G admits R to left or right, under the definitions
(6.3) r(E ri.g) E rr.g or E rr.g.

The proof is simple. The following theorem is a generalization.
THEOREM 13. If G admits R to left or to right, then so does any tensor product

G o H or H G, under the definition
(6.4) r(E g.h) E ra,.h,, r(E h,.o,) E
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Suppose G and H both admit R, each to one side. Then we define the reduced
tensor product G o’ H with respect to R as follows. Take the tensor product
G H, and define a new relation

(6.5) rg. h g. rh.

G o’ H is the group thus formed;it is the difference group of G o H with the group
generated by all rg. h g. rh.
TEOREM 14. If G admits R to the left, then there is a natural operator iso-

morphism

Ro’G -G,

letting R act on itself to the right and on R o’ G to the left, given by

(6.6) ( r,.g,) r,g,.

Here, (6.5) is replaced by

(6.5) rr g r[r], g r. r’[g] r. rg.
’To show that b is uniquely defined, we have for instance

(rr’ g) (rr’)g r(r’g) (r. r’g).

is a homomorphism into the whole of G; for (1 .g) lg g. It preserves
the operator, for

(r(Z r,. g,)) (Z rr,. g,) Z (rr,)g Z
r(Z rig,)

Finally, is (1-1). For if ,("r,.g,) r,g O, then

_r,.g,- Z l.r,g, 1.Zr,g,-- 1.0--0.

The theorem clearly holds with "right" and "left" interchanged.
Suppose R and S are rings. Then we can make/i o S a ring in four different

ways, namely,

(r s) (r s’) rr’ ss or rr s’s, etc.,

(Z (Z Z Z (r,.

The uniqueness of the definition is easily established. The associative and
distributive laws hold. If R and S have units 1 nd ls, then so has R S,
namely, 1. ls.
We shall not discuss the questions of zero-divisors or of fields.

7. Rational multipliers and tensor products.
Definition. For any rational number r, r a/b, (a, b) 1, and any A G

Compare J. L. Dorroh, loc. cit.
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(including A g), we let rA be the set of all elements gP such that bg’ ag,
g in A. This agrees with the definition of aA and with the natural definition
of (1/a)A. Then some of the formal properties of rational numbers as multi-
pliers hold. In particular, some elements can be divided by certain integers.
Division by integers, when it exists, is unique if and only if G has no elements 0
offinite order. For if g’ and g" are in (1/a)g, g’ g", then a(g’ g") g g

0, so that g’ g" is of finite order; if g 0 is of finite order a, then (l/a)0 is
not unique. We shall say G has unique division if it is completely divisible and
has no elements 0 of finite order. Because of Theorem 15 below, we may
then multiply by rational numbers in such a group, and all formal laws will hold.
The only theorem we will need in 8 is the following.
THEOREM 15. The following three statements are equivalent"
(a) G admits Rt as operator ring; we shall write r[g].
(b) G has unique division.
(c) For each rational r and each g in G, rg is a unique element of G.
Further, G can admit Rt in at most one way; if it does, then rg r[g].
First, if G admits Rt, then G has no elements of finite order. For, note first

that (for a > 0, and hence for a =< 0),

(*) a[g] (1 + + 1)[g] l[g] + - l[g] ag.

Now if ag O, a O, then a[g] ag 0 aO a[0]; hence

()[ =-l[a[g]] l[a[O]]=l[O]=O.-g 1 [g] a g]
a a

Next, if (a) holds, then for each integer a 0 and each g in G, g’ (1/a)[g]
exists, and ag’ a[g’] g; hence (b) holds. (b) clearly implies (c). If (c)
holds, then setting r[g] rg gives (a).

Finally, if two operations r[g] and r{g} are defined, then they agree;for by (*),

b([g])= (b )[g] a[g] ag b (
as G can have no elements of finite order, (a/b)[g] (a/b){g}. Also

b([g]) a[g] ag b(g),
and hence r[g] rg.

Before considering tensor products, we consider some divisibility properties in
general groups. Let tit denote the denominator of r; 5r b if r a/b, (a, b) 1.
LEMMA 1. If rg is not void, then g, and conversely.
For if r a/b, bg’ ag, and pa qb 1, then

b(qg + pg’) qbg + pag g.

The converse is clear.
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LEMMA 2. If (a, b) 1, then

(7.1) a A a ( A) I(aA)
To prove the first relation, the elements of a((1/b)A) are all g’, g’ ag*, g* in

(lib)A, i.e., bg* g in A; then bg’ ag, and as (a, b) 1, g’ is in (a/b)A.
Conversely, if g’ is in (a/b)A, then bg’ ag (g in A). Choose p, q so that
pa -t- qb 1, and set g* qg -t- Pg’. Then

bg* qbg - pag g, ag* qbg k- pag gr,
so that g* is in (1/b)A and gr is in ag* C a((1/b)A). The second relation is clear.
LEMMA 3. For any integers a and b,

(7.2) A, a A cA, -a (aA ) A.

The proof is simple.
We turn now to tensor products.
LEMMA 4. If r g and , h, then

(7.3) g’.h g. h’ for any g’ in rg and any h’ in rh.

Set r a/b, (a, b) 1. If

bg’ ag, g bg*, bh’ ah, h bh*,

then

g.h’ bg*.h’ g*.bh g*.ah g*.abh* abg*.h* ag.h*

bg.h* g.bh* g.h.

Example. If/t, h is false, rg. h may not be uniquely defined. For if G H
I2, g 0., h 12, then G o H I3, and 1/2g.h contains both 03 and 1..
THEOREM 16. If r A and r B, then

(7.4) rA.B A.rB;

if A and B are single elements, so is rA. B.
This follows from Lemmas 1 and 4.
Remark. r(g.h) maybe rg.h. For example, ifG=H =I3,g =h =03,

r 1/2, then rg.h 03, while r(g.h) contains both 0. and 13. However,

(7.5) r(A B) rA B;

for if r a/b, (a, b) 1, g in A, h in B, bg’ ag, so that g’. h is in rA. B, then

b(g’ h) bg’. h ag. h a(g. h) is in a(A B),

so that g’. h is in r(A. B).
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LEMMA 5. If b lA and b B, then

I (aA).B a ( ) I (aB) =A a ( )(7.6) =- A.B=a A .B A. . B A.a B

if A and B are single elements, so is the above.
Say (a, b) t, a a’k, b b’k; then (a’, b’) 1. To prove the first rela-

tion, we use Lemmas 2 and 3 and Theorem 16, and the fact b aA:
a,1 (aA).B- 1 1 (a’A).B A.B a- , (k(a’A)) .B , ,, - A .B,

I(aA).B=A.a ( B)=A.a’ (lc ( (, B))) c A.a’ ( B) A.B.a
From these the relation follows. The other relations are consequences of this
one or are easily proved. The last statement follows from Theorem 16.
THEOREM 17. If rr’ A and 6rr, B,n then

(7.7) r(#A B (rr’)A B A (r#)B, etc.;

if A and B are single elements, so is the above.
Sayr- a/b,r’ c/d, (a,b) (c,d) 1. Asbd]cA, etc.,

r(r’A).B a ( ( (cA))).B (cA).aB ac ( A).B
ac A.B (rr’)A.B, etc.
bd

8. The tensor product Rt G. First note that, if F is any completely divisible
group (in particular, Rt), then in studying F G, we could assume that G has no
elements 0 of finite order. For otherwise, let G be the subgroup of elements
of finite order of G. As G’ is in the nullifier of F, *(F.G’) 0 (see Theorem 9);
hence, by Theorem 10,

Fo G Fo (G @ a’).

Thus we may replace G by G @ G’, which has no elements 0 of finite order.
THEOREM 18. In Rt G, each element may be written in the form (1/a).g.

If G has no elements 0 offinite order, then r.g 0 if and only if r 0 or g O.
First,

r.g a 1 1- "g a-" ag -a’g"

Next, suppose we have an equivalence sequence reducing r.g to 0.0. In all
terms occurring, there is a least common denominator c. Multiplying every-

Possibly this hypothesis can be weakened.
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thing by c gives an equivalence sequence, which may be interpreted as a sequence
inI0o G, oragain, inGitself. Hence, ifr a/b, wehave (ca/b)g O. If
r 0, then ca/b O, and as G has no elements of finite order, g 0.
THEOREM 19. Rt G has unique division.
This follows from Theorems 12 and 15.
THEOREM 20. There is an isomorphism G Rt o G, given by (r.g)

-rg if and only if G has unique division.
This is an extension of Theorem 15. One half follows from Theorem 19;

the other half is clear.
THEOREM 21. If G has no elements 0 offinite order, then Rt o G is the small-

est completely divisible group containing G. That is, if H is completely divisible
and contains a subgroup H1 G, then it contains a subgroup H2 Rt o G.

Let H’ be the subgroup of elements of finite order of H. Clearly H’ is com-
pletely divisible; hence we may write H H’ H".1 For any h
write h’ (h), h" (h); then and are homomorphisms. Set H
b(H1); then H’ G. For if b(hl) 0 (hi in H1), then h is in H’, and hence is
of finite order; but h is in H1 G, which gives h 0.

Let H2 be the subgroup of Hp’ containing all elements with multiples in Hp.
H is completely divisible. For given h in H. and an integer a 0, choose
h* in H so that ah* h, and set h (h*). Then hi is in H", and as h is in H’,

ah ab(h*) b(ah*) b(h) h;

hence h is in H.. As H" has no elements 0 of finite order, neither has H
hence H. has unique division.

Let be the isomorphism of G into H’. As rh is uniquely defined for h in the
group H2 (Theorem 15), and clearly obeys (r r’)/h rh r’h, r(h h’)
rh rh’, we may set

( r,.g,) r,O(g,),

defining a homomorphism of Rto G into H. Suppose O(a) 0. If a

(l/a) .g (Theorem 18), then O(a) (1/a)(g) 0. Multiplying by a gives O(g)
0, and hence g 0, and 0, as 0 is an isomorphism. Hence is (1-1).

For any h in H., we may take a so that ah is in HP; then for some g, ah
O(1.g), and h O((1/a).g); hence is an isomorphism, and the theorem

is proved.

9. Tensor products and character groups. In some cases, the group ChH(G)
of homomorphisms of G into H can be expressed in terms of the two groups H
and ChI(G), by (9.1). See also Theorem 25 of Part II. We remark in passing
that ChH(G) and G form a group pair with respect to H, with the definition
(,.g) ,(g) (, in Ch(G), g, in G).

See R. Baer, The subgroup of elements of finite order of an Abelian group, Annals of
Mathematics, vol. 37(1936), pp. 766-781, (1; 1).
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THEOREM 22.3

(9.1)

defined as follows.
(9.2)

There is a natural isomorphism

Cho(G o H Z C Ch,(G),

For us in Ch (G) and hs in H,

(E E
If either G or H is afree group with a finite number of generators, then Z ChH(G).

It is clear that the definition of is unique, and is a homomorphism. We
must show that it is (1-1). Suppose the element (9.2) equals 0. Say the sum
contains n terms. Let A I0 I0 be the group of all n-tuples (al,
an) of integers, and let A be the subgroup of all (al, a) in A for which

a,h O. We may choose a base

as (a/l, ash)

in A and integers p p, (m <= n) such that

Pl (I pmm

form a base in A’." For each g, let u(g) be the element (u(g), ...,
of A; as m()h O, () is in A’. Nenee, for each , here is a uniquely de-
fined se of numbers o(), o() such

hence

u piapi.

As the u(g) are homomorphisms, so are u(g) and the o(0); the oi(g) are in
Cho(O). Set

i ah

then

p, pah 0 (i-- 1, ,m),
kl

by he choice of he o and pi. Hence, using he distributive laws in Ch,(G) H,

u,-h pao h, oi" Pi a,h

as required.

Compare Theorem 25.
See, for example, Alexandroff-Hopf, loc. cir., p. 566.



510 HASSLER WHITNEY

Now suppose H has a base 1, ..., n, so any h may be written uniquely
a;. Let be any homomorphism of G into H; then we may write

and the u(g) are elements of Chlo(G). Also

$:

so maps Cho(G) H into the whole of Ch,(G).
Suppose finally that G has a base , . Let (g) be the element of

Cho(G defined by (0) 1, 5(0) 0 (j i). Take any homomorphism
of G into H. Then for any g a, (g) a, and

(g) a(O)= 5,(g)();

hence, setting h (),
(E E

This completes the proof.
Examples. Suppose G H I. Then Ch,(G) hs two elements, while

Ch (G) H has only one. Again, let G be the additive group of triadic rational
numbers (all numbers of the form a/3), and set H I. There are two ele-
ments in Ch,(G), determined by (1) 0 and (1) 1 but there is only
one element in Cho(G H.

II. Linear spaces

10. Products finite dimensional spaces. A linear space, or vector space, G,
is an Abelian group which admits the real numbers R1 as operators (see 6).
Let G(g,...,g) be the subspace of G generated by g,..., g, i.e., all
ag (a real). If such a set generates G itself, then let g, g be such a
set with the least number of elements. Then these elements form a base for G,
and G is of dimension m.

In any finite dimensional linear space G, with a base g, ..., g, we may
introduce natural topology by defining neighborhoods U(e) of 0 for ech e > 0,
consisting of all ag witha < . The topology is independent of the choice
of a base. In this topology, the operation ag is continuous in both variables.

In the tensor product G H, we clearly wish to have

(10.1) a(g.h) ag.h g.ah (a in R1);
hence we use the reduced tensor product (see (6.4)), but call it the tensor product
simply. Without this, we would have for instance in Rl, . 1 1..
Further, if we assume that g.h is continuous, then (10.1) follows. To show this,
the last statement in Theorem 15, and Theorem 16, show that bg. h g.bh for
any rational b. Letting b a gives the result.

The group is necessarily Abelin. Compare 3, (e). If G is aot linear, it can be made
so by taking R1 G; see Theorem 12, 6.
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We assume in the rest of 10 that G and H have bases !, Ore. and 1,
n, respectively.
THEORE 23. An element of G o H may be written uniquely in any one of the

three normal forms

(10.2)

thus (10.2) holds with

(10.4) a,i
_, bkc,i,
k

etc.;

Given any expression g.h for a in G H, the above procedure gives the
normal forms in a unique manner; we must show that if Eg"h Eg"h, the
two expressions give the same result. It is sufficient to prove this for (g + g*). h
and g.h -- g*.h, for g. (h -- h*) and g.h -- g.h*, and for ag.h and g.ah. In
each case, the proof is simple.

Let Ch,(G) denote the group of linear mps (= continuous homomorphisms)
of G into H; this is linear space of dimension mn. In particular, L(G)
Ch(G) is the group of linear real-valued functions in G, and is called the con-
jugate space of G. Here, isomorphism will mean continuous isomorphism
operator isomorphism. The following theorem is well known.
THEOaEM 24. L(G) G. Further, there is a natural isomorphism

(10.5) L(L(G)) G,

defined as follows. For any g in G, (g) is the element of L(L(G)) which, for any
u in L(G), has the value u(g).

Let (g) be the element of L(G) such that () 1, i(’) 0 (j i).
Clearly 1, %m form a base in L(G); hence L(G) G. Next, is linear.
It is (1-1); for if (g) 0, then u(g) 0 (all u in L(G)), which implies g 0.
Given any v in L(L(G)), set a v(); then for any u b;,

so that (a$) v. Clearly (ag) at(g); hence is an isomorphism.

For, if

then the distributive lws give

E E (E (E E E E
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THEOREM 25.16 There is a natural isomorphism

(10.6) Ch,(G) L(G)o H,
given by

00.7) ;e) E
is clearly uniquely defined. If we write all elements of L(G) o H in the

third normal form u., the properties of are easily established; for any
element of Ch,(G) can be written uniquely as -’u(g), and if this is the zero
element, i.e., it is equal to zero in H for all g, then all u(g) O.
COROLLARY I. G o H may be written in the form

(10.8) G H L(L(G))o H Ch,(L(G)).

The isomorphism of the first group into the last is given as follows. For g.h
in G H and u in L(G),
(10.9)
Coov II. There is a natural isomorphism

(10.10) Cha(Rl) G;
for u in Ch((Rl), (u) u(1).

For L(Rl) o G Rl G G. (Moreover, a direct proof is obvious.)
THEOREM 26. G H is a linear space of dimension ran, with a base 1. 1,

(,.,,. If {U} and {V} are neighborhood systems in G and H, respectively,
defining their natural topologies, then either of the following neighborhood systems,
if we use p min (m, n),
(10.11) N(U, V) U. V + + U. V (p summands),
(10.12) N(U1, U, VI, V, ...) *(Uk.Vk)

k

defines the natural topology in G H.17 The multiplication g. h is continuous.
The first part of the theorem follows from Theorem 23. Let N, Nt, N" denote

natural neighborhoods and those of (10.11) and (10.12). Given an N N(e),
consisting of all a... with a. =<. e2, set 1 e/(mn) 1/2, and let

U U(el/2k), V V(1), (/ 1, 2,... ),
be natural neighborhoods in G and H. Then if g bkO is in U and hk
Y’c.j is in V, (10.4) gives, if we use any finite number u of summands in
(10.12),

a bc < /2 < 1 e/(mn).
This holds if at least one of G, H is of finite dimension. Compare Theorem 22.
If we map R1 into a curve everywhere dense on the torus, the topology of the torus

gives an "unnatural" topology in R1. In R1 Rl, either type of neighborhood as here given
then contains the whole space.
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and 2.J g"h is in N. Thus any N contains anHence ai

Next, given an N", take

UU U, VV V.
Then clearly N’ N(U, V) N".

Next, tske 8ny N’ N(U, V). Suppose for definiteness thst p m. Tske
esothst U(2et) Usnd V(e) V, 8ndset e et. Nowtske 8nyaof
G o H in N(e); then we en write a a,O,.i, with ai < e. Also,

)0," oa, o

As m p nd e0 is in U(2e) U, to show that N(e) N(U, V), it is sufficient
to show that Oaiii is in V(e). But

0 a a < e,

nd this proves the statement.
The continuity of g. h is clear from the relation

If G and H are metric, and hence scalar products g g’ and h h’ are defined,
we may define scalar products and hence a metric in G H by

(E (E E
k

11. Tensor algebra. Let G be a linear space of finite dimension n; in 12,
it will be the "tangent space" at a point of a manifold. Any element of G
we shall call a contravariant vector. An element of H L(G) we call a covariant
vector. Any element of the linear space

(11.1) T(p, q) G o G o H o o H (p factors G, q factors H)

we shall call a tensor of contravariant order p and covariant order q. As L(p, q)
is a linear space, we may add two tensors of the same type, and multiply a tensor
by a real number. Using Theorems 3 and 4 in Part I, we have

(Go o Ho ...)o (Go o Ho ...)

=Go o Go oHo oHo

Hence a tensor of T(p, q) and a tensor of T(p’, q’) may be multiplied, giving a
tensor of T(p + p’, q + q).
The process of contraction is as follows. To contract the element g.h of

For a study of this metric in Hilbert spaces, see Murray and yon Neumann, loc. cir.
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T(1, 1) G H, recall that H L(G), and set ((g.h) h(g), a real number.
To contract the element

a g...g’.h... h of T(p,q)

with respect to the p-th g and the q-th h, for example, set

(11.2) Q() hq,_v, g-i h,-1g,)gt, h,
k

this is an element of T(p 1, q 1).
Let 01, , form a base in G, and choose so that () ; then ,
.., form a base in H. By the proof of Theorem 23, we may write any

element of T(p, q) uniquely in the normal form

(11.3) A . g
ir,]=l

i1"" "ipthere are np+q terms in the sum, and the A q are called the components of
in the coSrdinate system of the . Let us verify the laws of transformation

Sayof the components.. Suppose we introduce the new base g, g.

kl kl

If h (g) 5, then setting h" b gives

(gi) b( ai 0,) Z ba oa’.
k k,l k

Hence b a, and , Putting in (11.3) and using the distributive
laws gives

a= A .qa aa a, g g

Calling the new components A ’*" "’*v,. q, we have the ordinary laws of transforma-
tion. Note that

Z ’- B,,B A

so that the terms as here introduced agree with the usage in tensor algebra.

12. Tensor analysis. LetM be a differentiable manifold.1 By a parametrized
curve C starting at the point x0 in M we shall mean differentiable map of an
interval 0 =< =< into M, with (0) x0. Let us introduce a coSrdinate
system into a neighborhood of M about x0, i.e., a (1-1) differentiable map 0 of a
region of the space E of sets of n numbers (x1, x) into M, with non-vanish-
ing Jacobian; say 0(0, 0) xo. Then C translates into a curve C in E,

9 See, for instance, O. Veblen-J. H. C. Whitehead, Foundations of Differential Geom-
etry, Cambridge Tracts in Mathematics, No. 29, 1933, or H. Whitney, Differentiable mani-

folds, Annals of Mathematics, vol. 37(1936), pp. 645-680.
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given by 0-1((t)), if is small enough. We say two parametrized curves
starting at x0 are equivalent if, when translated into E, they have the same
tangent vector (in both magnitude and direction). Clearly the definition of
equivalence is independent of the coSrdinate system chosen. Hence the classes
of equivalent curves form a set of elements intrinsically defined in M; we call
these contravariant vectors at x0. Using a fixed coSrdinate system, we may
obtain a (1-1) correspondence between contravariant vectors g at x0 and vectors
v in E at 0, merely by choosing, as an interval, the line segment of v, parametrized
so that i at its end, and mapping it (or a portion of it, if it does not lie wholly
in the region) into M with 0. We may add two contravariant vectors at x by
taking the corresponding vectors in E, adding, and mapping back into M.
Again the result is independent of the coSrdinate system chosen; hence the
contravariant vectors at Xo form an intrinsically defined linear space, the tangent
space G(xo) to M at Xo
We may obtain an intrinsic definition of L(G(xo)) H(xo) at x0 by considering

differentiable functions defined in a neighborhood of x0, which vanish at x0,
and calling two functions equivalent if their partial derivatives at x0 are the
same in any coSrdinate system. To add covariant vectors, we need merely
add the corresponding functions.
We shall consider briefly covariant differentiation in M. Suppose that to any

two sufficiently near points x0 and xl of M corresponds a linear map I,.1 of
G(xl) into G(xo), so that certain simple continuity and linearity properties are
satisfied, which we shall not make precise. This will define an ane connection
in M. Now let A (x) be a differentiable tensor field, being, for each x, an element
of T(p, q; x) (using G(x)). Let g be any contravariant vector at x0, and let C,
given by O(t), be a corresponding parametrized curve. Then if xt (t), we
may define

1 [,, A (xt) A (x0)](12.1) VA(x0) i_.m o

(Of courseo may be used to translate a tensor at xt into a tensor at x0 .) For
each at x0, VA(x0) is a tensor of T(p, q; Xo), and it depends linearly on g;
hence we have a linear map of G(xo) into T(p, q; Xo). By Theorem 25, there is a
natural isomorphism

Chr(,,q,:o)(G(xo)) T(p, q; Xo)o i(G(xo))- T(p, q- 1; x0).

Hence, at each point x0 we have a tensor of T(p, q + 1; x0), of the same contr,-

variant order as A and of covariant order one greater; this is the covariant
derivative of A t x0. Again, the definition is intrinsic.

0 By using a coSrdinute system about Xo and letting x x0, we may use this connection
to obtain an affine connection in the ordinary sense. Conversely, given an ordinary affine
connection, we my define geodesics in M, and by following along them, define a connection
as above. If we imbed M in a Euclidean space as in Whitney, loc. cir., Theorem 1, we may
realize the tngent spaces by tangent planes of dimension n, and define an affine connection
by projecting one tangent plane onto another.
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13. Products, general linear spaces. A representation g.h of an element
a of G o H is minimal if there is no representation with fewer summands. The
rank p(a) of a is the number of summands in a minimal representation of a.

We consider 0 0.0 as having no summands, and set p(0) 0.
We collect some known results (at least for finite dimensional spaces) in the

following theorem.
TEORE 27. G o H is a linear space. For any in G o H there are correspond-

ing linear subspaces G(a) and H(a) of G and H with the following properties.
(a) There is a representation g.hfor a with g in G(a), h in H(a). In any

I, erepresentationg h for a, G(a) (g, H(a) H(h
(b) dim G(a) dim H(a) p(a); G(a) and H(a) are G(g and H(h

in any minimal representation ’g.h of a.

(c) gi.hi is minimal if and only if the sets g and h are each in-
dependent.

(d) If g g,, and h h,, are bases in subspaces G’ of G and H’ of H,
and a a,ig,.h then p(a) rank II a,. II.

(e) If g. h O, then either g 0 or h O.
(f) g.h g’.h’ 0 if and only if g’ ag, h’ (1/a)g for some real a.
The first statement follows from Theorems 1 and 13.

" G" " H*. G*Suppose a g.h; gi’. h’(, g, in G’, g, in h, and h, in Set
G’ f G", and choose subspaces G and G. (possibly containing 0 alone) such
that

G’ + G" G* G G., G G’, G G".

Choose bases {g} in G*, {g} in G, {g} in G ;then all the g’s form a base in
G’ 1- G’. By Theorem 23, we may write uniquely, for some h, etc., in H*,

+ +
Now G’ G* @ G; hence, if we reduce ’g.h to this normal form, the third
group of terms will not appear. As the normal form is unique, the third sum

0. Similarly, as G" G* @ G, the second sum vanishes. Hence a

g.h can be expressed by using g’s from G’ [’1 G" alone. Hence there is a mini-
mal subspace G(a) which may be used. Find similarly a minimal H(a). Now
a can be expressed, by using G(a) and H’ H(a), and G’ G(a) and H(a).
Choosing bases properly in G’ and H’ and using the first normal form, we see
at once that a may be expressed, using G(a) and H(a). This proves (a).
Next we show that rank ll a. II depends on a alone. Suppose {g} and {g}

are bases in G’, {h} is a base in H’, and a Eaig.hi Ea’ig’.hi. If g
bg,’ then a’ bai, i.e., A’ BA. As B is non-singular, rank A

rank A. Similarly, change of base in H causes no change in the rank. If
G" G and H" H’, and we choose bases in these spaces containing the
above g and h, then aig. hi is also a normal form for a, using G" and H".
The new [] a,. [[ is the old !] a,-II with extra rows and columns of zeros; the ranks
are therefore the same. Now given any two representations of a in normal
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form, using the pair G’, H’ and the pair G", H’, we may also write a in normal
form, using G’ G" and H’ H". The above proof shows that all ranks of
matrices are the same.

p(a)

If g.his minimal, then obviously the sets {g} and {h} are independent.

They form bases in spaces G’ and H, say, and the expression g.h is then in
normal form. The matrix is the unit matrix, and hence is of rank p(a). This
proves (d). As G(a) G, and dim G(a) < p(a) is clearly impossible, G(a)
G’ and dim G(a) p(a); similarly for H(a). (b) is now proved. If a

g.h and the sets {g}, [h} are independent, then we have a representation
il

in normal form, with matrix of rank r; hence r p(a), and -’g.h is minimal.
This proves (c).
To prove (e), suppose g 0, h 0. Then g.h is minimal, by (c), hence

p(g. h) 1, and g. h 0. (f) follows from the fact that for a g. h g’. h’ O,
G(a) all multiples of g all multiples of g.
THEORE 28. If G is a linear subspace of G, then there is a natural isomorphism

G’o H Z*(G’.H).
Using ’g, X h, in Go H, set (g, X h) g,. h,. Clearlyb is a uniquely

defined homomorphism onto the whole of *(G.H). Suppose (g X h)
g.h, g X h 0. We may supposeg X h is minimal. Then the sets
(gl and {h} are independent, and hence .q.h is minimal, by the last theorem,
and g.h 0. Hence is (1-1), and this completes the proof.

14. On topological linear spaces. We shall use the following definition. If
G’ G*, a projection of G* into G is a linear map of G* into G’ such that every
element of G’ is fixed.

Definition. We shall call a topological linear space G a linear space with sets
U, V, called neighborhoods (of 0), such that"

(1) 0 is in every U;
(2) given U, V, there is a W U V;
(3) given U, there is a V such that for 1 =< a -< 1, aV U;
(4) given U, there is a V with V V U;
(5) for every U and every g in G there is an a with g in aU;
(6) for every finite dimensional subspace G’ of G and every natural neighbor-

hood U’ in the space G’ (see 10), there is a neighborhood U in G with the follow-
ing property. If G* G’ is a finite dimensional subspace, then there is a
projection of G* into G’ which carries U f’l G* into U’.
We shall relate this definition to Definition 2b of yon Neumann.
Note that (6) implies a separation postulate" If g 0, then there is a U

which does not contain g. The reason for using our (6) is that with it one may
prove the same property, and hence the separation postulate, in tensor products.

J. yon Neumann, On complete topological spaces, Transactions of the American Mathe-
matical Society, vol. 37(1935), pp. 1-20. We refer to this paper as N.
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THEOREM 29. A topological linear space (even with (6) replaced by a separation
postulate) is a regular Hausdorff space; g g’ and ag are each continuous in both
variables.
As our definition has all the properties in N, Definition 2b, except his (2)

and (7), and a separation postulate holds, his proof holds without change.2:

We may now use Uc closure of U and U inner points of U, etc., as in N.
Preparatory to proving Theorem 30, we note the following facts.
(a) If a set of sets U satisfies the above properties, then so do the sets Uc,

the sets U, and the sets U U (= all g g’, g and g in U).
(b) The sets Uc, (Ucz), and U U define the same topology (i.e., give the

same definition of S for any S) as the sets U.
These hold also if N, Definition 2b is used. To prove these facts, first

note that N, Theorem 3, in particular, (aS)c aSz, holds for closures; the
proof is essentially the same. (a) and (b) now follow easily, using especially:
UCU+ U;V+VCUimpliesVU.

(c) In a convex space as in N, we may suppose that the U are convex, and
either closed or open, and that U U.

For we may use either the U or the (U). The Uc are convex, by N,
Theorem 13. To prove this for (Uc) S, take g and g’ in S and 0 < a < 1.
Setg*=ag+ (1-a)g’,andchooseVsothatg-l-VS,g’+ V S. Then

g* - V a(g + V) + (1 -a)(g’ + V) C Sc S,
and hence g* is in S. Finally, replace each U by U U U’; then all former
properties hold, and U’ U’.
LEMMA 6. Let G be a convex topological linear space as in N, satisfying our (c).

Let g g, g’, be independent; let g g determine the subspace G of G,
and the whole set, the subspace G*. Let m be an integer <- . Let U be a neighbor-
hood such that

(14.1) if a,g, is in U, then a, <-- t, (i 1, m).

Then there is a projection of G* into Gx such that the projection of U f] G* satisfies
the same inequalities.

It will not restrict the generality if we suppose that t are the smallest numbers
such that (14.1) holds. As U U, no inequality in (14.1) can be bettered
I1OWo

First, suppose we have two elements

(14.2) g ag, + cg’, g7 bg, + cg’, in U;
then as U -U is convex,

(g g) (a- b)g, is in U,
** In Hausdorff, Mengenlehre, Berlin, 1927, there is an error on p. 229: (5) does not

follow from (6), as shown by a space in which the only open sets are the null set and the
whole space. In N, proof of Theorem 6, one should mention that a separation postulate
holds, as a consequence of Definition 2b, (2).
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and hence

(14.3) a, b <-- 2t, (i 1, m).

Now take any c _>- 0 for which there is an element of the form (14.2) in U;
let (c) and (c) (i 1, m) be the greatest lower bound and least upper
bound respectively of all numbers d such that for some numbers al,

ai-1 ai+l a,

aigj q- (-4- h q- d)g q- cg’ is in U (- for , 4- for ).

In other words, (c) and (c) show how much U sticks out beyond the rec-
tangle of the t, in the g direction, at the height c, with respect to the direction
of g’. By the choice of the h, (0) (0) 0.
By (14.3), (c) _>- (c). We now show that

(14.4) if 0 < c < d, then (c__) < (c’) ,(c) > (c’)
C C C C

Suppose, for instance, the first inequality is false.
ai (j i), e, such that

g _,
aigi + (--t, -t- d)g, -I- c’g’

d -[,(c) e],

Then there are numbers

is in U,

e>O.

By the choice of the h, there is an element

g _, bg -+- (-t, + dog, in U, d’ <

As U is convex,

c
gx+ g .ag+ -h+-d+

is in U. But also

c’e
C C"

c’ d’
C ] g

-{- cg’

c c’ c
d’

contradicting the definition of (c).
The inequalities show that we may define

d - c
d’c,. <(c)

(14.5) lim 4,(c),
c--,0+ C

then

(14.6)

lim (c).
cO+ C

C
(c > 0; i 1, ,m).
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Set

(.) + Z:;
we shall show that if we project U along the direction of g,t into G1, i.e., use
(ag + a"g") ag, then (14.1)will hold for the projection. As U U,
it will be sufficient to consider the part of U with c > 0. If this is false, say for i,
then there is an element

(14.8) ag + cg" in U, c> O, a > t or a <: -t.
’--1

Using (14.7), we have
’-<m

(14.9) (ai- c;)gi + aig + (a, + c)g, + cg’ in U.

Suppose first that a < -t. Then

,(c)
C

contradicting the definition of (c). Next, if a > t, then

a, + c4) > t -t- c >- t, + /,(c),

contradicting the definition of (c). This completes the proof.
THEOREM 30. Any convex topological linear space as in N is a topological linear

space as here defined, even if his (2) is replaced by a separation postulate.
We may suppose his neighborhoods satisfy our (c). We must prove our (6).

Let gl, ,gm form a base for G’, and choose tl, ,tm so that all points
_,ag,, a, <- t,, lie in U’. Let R be the closed region ]a -< t, and let A
be its boundary. For each g in A, we may choose a U(g) not containing it,
and a V(g) so that V(g) V(g) U(g). As the operations in G are continuous,
ag is continuous in the a, so the (V(g)) f’l G’ (S inner points of S) are
open in the natural topology in Gt; hence finite number of the sets g V(g) f’l
G cover A. Let U be a neighborhood in the corresponding set V(g)

V(gx). Now U contains no element of A. For suppose g is in A U. Say
g is in g + V(g). Then as g is in U V(g), g is in V(g) V(g) U(g),
a contradiction. As U s convex, U f’l G’ is in the complement of A in R.

Let g+, ..., g form, with gl, g, a base in G* (if G* G’), and let
G be the space generated by g, g (i m - 1, n). We shall prove,
by induction on i, that G can be projected into G’ so that U f’l G goes into R;
as R Ut, the case i n gives the theorem. There will be elements g+,
g such that g, ..., g also determine G, and the projection of G into G
is with respect to g+l, ..., g"

ag ag.
kl kl
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Suppose we have found the elements gm+l, g. As the projection of G
into G’ carries U G into R, (14.1) is satisfied. Hence we may apply Lemma 6
with g’ G* G+I this gives a projection of G+I into G such that theg+l

projection of U G,+ satisfies (14.1). Let g,+ give the direction of the projec-
tion; then projecting G,+ into G’ with respect to gm+, ..., g,+l carries U l
G,+ into R, as required.

15. Products topological linear spaces. We prove
THEOREM 31. If G and H are topological linear spaces, so is G o H, the topology

being given by (10.12). (We may use either open or closed neighborhoods in G and
in H; see 14.) The multiplication g. h is continuous. The topology in G o H
depends only on the topologies in G and in H, not on the neighborhood systems
employed.

First, G H is a linear space, by Theorem 27. We shall prove the postulates
of 14. (1) is trivial. To prove (2), take any two neighborhoods N(U1,
VI, ...) N(U, V,), and N(V; V). Choose U’’ in U, U and V’’ in
V . V; then

N(U’,’; V’,’) C N(V, V,) N(V; V).
To prove (3), given N(V, V,), choose U so that aV C U, if al =< 1 (i

1, 2, ). Then

aN(U; V) N(aU; V) N(U,; V,).

To prove (4), take any N(U V). Choose U and V so that

Now take any 7:g,.hand g.h inN(V; V). As g.hisin U’.V’, V. V,
g.h is in UI. V U. V, g..h is in U’. V’ Us. V, etc., we see that g.h
g.h is in N(U V).

To prove (5), take any g.h, and any N(U, V,). Choose U and V
so that

v,, v,, =< 1; i 1, ..., s),

take a and b so that

g is in aU, hi is in bV,
and let a be the largest of the ai and b[. Then

a,U a (a,/a) U a U,, etc.;

it follows that g.h is in

aN(U, V,) N(aU ;aV).
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We now prove (6). Let F’ be a subspace of F G H, generated byfl,
f. Set (see Theorem 27)

a, () + + a(f,), H’ H(fl) +... + H(f,).

Letgl,...,gmandhl,...,hbebasesinG’andH’; setf g.h. Then
the f. form a base (see Theorem 26) in a space F" F’. Take a fixed projec-
tion of F" into F’. Given a natural neighborhood N’ in F’, we may choose a
natural neighborhood N" in F" which projects into a subset of N’. As any
projection of an F* into F" combines with the above projection to give a pro-
jection of F* into F, it is sufficient to prove (6) with F’, N’ replaced by F", N".

Choose e > 0 so that anyaf with each a is in N". Let A and B
be the sets of elements a,g, and b,h,in G’ and H’ with a , b, 1.
Choose U in G by (6) so that any U G* can be projected into A, and choose
V in H so that any V H* can be projected into B. Choose U, U, so
2UU_,andsetV= Va V. SetN N(U V).
Now take any F* F". Choose a base f,.. f in F*, and set G* (f,),

H *.H* (f) Choose projections of G* into G’ and H* into H’ so U G*
goes into A and V H* goes into B. If G is the subset of G* projecting into
0 in G’, and g+, ..., g is a be in G, then g, ..., g is a base in G*;
choose a base h, ..., h,. in H* similarly. Now any element of F* can be
written uniquely in the form

(m, n)

aig hi
(, i)-(, )

where in ’, either i > m or j > n. (Not all such elements need be in F*.)
Dropping out the second group of terms defines a projection of F* into F".
We shall show by induction that any (U. V) f’l F* projects into elements

a,fkz with ak =< /2; it will follow that N * (U. Y) projects into N".

Take first any a in (U. Vx) ’l F*; we may suppose a 0. Then a g. h,
gin Ux, hin V. As aisinF*, G(a) CG*. But also G(a) G(g);hence
G(a) G* f’l G(g). As a O, G(a) contains elements 0, which implies
that g is in G*. Similarly h is in H*. Say

g ag, h bh.
i=I

Then as g projects into A and h into B, g. h projects into_, a, biffs, a, bl <
(i, i)=(1,1)

so that the statement holds for (U. V) F*. Supposing it holds for/ 1,
we shall prove it for/c. Take any g in U and h in V such that g. h is in F*.
Then

2g is in 2U U_I, h is in Vk_,
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so that 2(g. h) is in (UI-1. V_I) l F*, and hence projects into asfwith a.] =<
e/2-. Hence the required inequality on g.h holds. This completes the
proof of (6).
To show that g. h is continuous, as -F is continuous in G H (Theorem 29),

and

(15.1) (g + g’).(h + h’) g.h g.h’ + g’.h + g’.h’,

it is sufficient to show that g. h’ is continuous in h’ at h’ 0, g’. h is continuous
in g’ at g’ 0, and g’.h’ is continuous in g’ and h’ at g’ 0, h’ 0. For the
first case, given N N(U V), choose a so that g is in aU, and choose V
so that aV C V (N, Theorem 1, with n 1). Then

g. V C aU. V UI.aV U. V C N.

The second case is similar. The third is clear, as U. V N.
Finally, let U}, U} and V}, } be equivalent neighborhood systems in

G and H, respectively. Given an N(Us; V), choose Us U and s V
(i 1, 2, then( ) (::: N(Us Vs). Similarly find an N in any R.
Hence the IN} and {/} are equivalent. The theorem is now completely
proved.

III. Topological groups

16. The topological tensor product. An Abelian topological group G is an
Abelian group which is at the same time a Hausdorff space,23 and in which
(g, g’) g + g’ and (g) -g are continuous. If U, U’, are the neigh-
borhoods of 0, we may let the sets g + U, g + U’, be the neighborhoods of
the element g, without altering the topology. If we assume that the separation
postulate in Hausdorff, page 229, (4), holds, then the postulate (5) follows.
We shall say the space G is sequence-separable if it contains a finite or de-

numerable set of points forming a dense set.*
If G and H are sequence-separable topological groups, we define their topo-

logical tensor product G H, or tensor product simply, as follows. Let , ,
and hi, h2, be sequences of points dense in G and H, respectively. Let
P, P, be a sequence of pairs of elements, P (0, ), such that each
pair (0, ) occurs infinitely often among the P. Let T’ be the discrete
tensor product of G and H, with elements --gs X hi. For each sequence U,
U, of neighborhoods (of 0) in G and each sequence V, V, in H, set

Q(U, V) (1,, X V+ U X , + U X V,
(16.1) N’(U, r, ...) * Q(Us, rs).

Next, call two elements a, of T equivalent, , if every a + N contains t
or vice versa, or if there is a succession a a0, a, a fl, with as and

See Hausdorff, loc. cir. Note that neighborhoods are open sets here.
For metric spaces, this is the same as separability.
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+i equivalent as above. The sets of equivalent elements form the elements of
the tensor product T G o H. The neighborhoods N of 0 in G o H are the
images of the sets N’ in T’; they are obtained by replacing._.)< by in (16.1).
Addition in T is the image of addition in T’. The element 2.Jg"h in T is the
image of g h in T’.
THEOREM 32. G o H is a sequence-separable Abelian topological group; the

multiplication g.h satisfies (1.1), and is continuous. The topology in G o H is
independent of the sequences 1, {1, and of the neighborhood systems UI,
V}, employed.
We begin by showing that T has all the properties of a topological group,

except for the separation postulate. First we prove Hausdorff’s postulates
(B), (C) (loc. cir., p. 228). Given N’(U1, VI ) N’(U V) and
N(U; V), take U (:7. U, A U and V’ (Y.. V, A V (i 1, 2,...); then
clearly

(16.2) N’(U’’; VT) N’(U ;V) A N’(U;; V).
To prove (C), it is sufficient to show that, for any N’(U; V) and any
in N’(U V), there is an N’(U’; V’)with
(16.3)

As a is in N’(U,; V,), it is in Q(U; V) for some s. Choose numbers

(1) > s, (2) > (1), (3) > 4(2), so that P P(o, and set U U(),
V V,(o. Then

hence Z* Q(U, Y) c Z* Q(U, V,), and (16.3) follows.

We show that the group operations in T’ are continuous. Given N’(U V),
ake

U U, A (- U,), V V,

then

-Q(U, V)
hence

(16.4) -N’ V),N (m,; V’,)
and -a is continuous in a. To show that a + fl is continuous, we must find
N’(U’; V’) corresponding to N’(U V) such that

(16.5) N’(U; V) -t- N’(U;; Vi) (Z. N’(U, ;Vz).

Choose in succession integers

0(1), (1) > (1), (2) > (1), k(2) > (2),
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so that P P() P,(i). Take

U u.)l U., V V() V().

Then g() g, etc.,

Q(U, V) Q(,)(U(), V(,>) 0 Q(,)(U(),
Hence

Q(...) + Q(...) q(,)(...) + Q(,)(...),
and (16.5) follows.
We now consider equivalent elements in T. First we prove
(*) If a fl, then for every N, a + N contains ft.

For suppose there is a succession a a0, a, a fl, such that for each
i, either every a + N’ contains a+, or every a+ W N’ contains a. The
latter condition implies the former. For given an N, choose N’ -N’ by
(16.4); then as a is in a+ + N, a+ is in a- N’ a + N’. Next, given
an N’, choose N’ (using (16.5)) so that

Ni + Ni +... + N N’ (n summands).

Setting A N’ + + N’ ( summands), we huve

as required.
Next we prove that T is u topologicM group. Let 0(a) be the element of

T containing the element a of T. We must show that addition in T is uniquely
defined; this is so if a a’ and ’ imply a fl a’ fl’. Given any N’,
choose N, so that N + N’ N’.C By the property (*), a N a’ and

+ N ’; hence

(. + ) + Y’ (. + g’.) + ( + N’) .’ + ’.
and a fl a’ fl’. Further,

( + ) e() + e(),

so that 0 is a homomorphism of T’ into T (which is clearly an Abelian group).
To prove that T is a Hausdorff space, suppose N O(N) nd N O(N) are
gNen; tke N’ N’ fi N; then N O(N’) N N. Next, suppose
a* is in N (N’); then a* 0(a), a in N’. Choose N so that a + N C N’;
then a* + O(N) O(a + N) c N. To prove the separation postulate,
supposea* 0. Saya* 0(a). As0(0) 0, aisnot0, and thereisan
N not containing a. Set N 0(N); then a* is not in N. For if it were, then
we would have a* (), fl in N’ and a; but taking N by (16.3) so that
fl + N’ c N’, the property (*) gives a C + N c N’, a contradiction. To
prove that the operations in T are continuous, given N 0(N’), take N’ c -N’;
thenN 0(N;) c N; also given N 0(N’), choose N’, so that N’ + Y’ c N’;
then O(N;) + O(N;) C N.
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Next, (1) holds, as it holds for . We shall now show that g. h is continuous.
First we show that it is continuous in h at h 0; given N N(U V), we
must find V so that g. V N. As the are dense in G, we may choose j so that
g- .isinU. ChooseV V 1 Vi;then

g.V (g- 0)’V+ 0.’V U.V+ 0,’V N.

Similarly g.h is continuous in g at g 0. Further, g.h is continuous in both
variables at g 0, h 0; for U. V N(U; V). Finally, as addition is
continuous in T, (15.1) shows that g.h is continuous.
Next we show that T is sequence-separable; in fact, that the set of all finite

sums.q is dense in T. As ech element of T is a finite sumg.h and
is continuous, it is sufficient to show that for any g. h and any N N(U V)
there is a . h. in g. h -t- N. As is continuous, we may choose U and V so that
(g + U). (h + V) g. h -t- N; we need now merely take in g + U and . in
h+V.
That the topology in T is independent of the neighborhood systems chosen

is trivial; see the end of the proof of Theorem 31. We must still show that the
topology is independent of the choice of the 0 and . By symmetry, it is
sufficient to show that if {0} is replaced by the dense sequence {g }, then any
N(V; V) contains an N*(V’; V), defined in terms of the g. Let ,, v, re-
place , u. Given N(U V) No, choose N, N., in succession so
that N+ + N+ N. As and + are continuous, we can choose U and
V so that

Q O’V + V., + U.V c7. N,

then for any s,

C. N + + N_ + N,_ C. C. N + N C7. No,

and hence N*(U; V) No, as required. This completes the proof of the
theorem.
T.EOUE 33. Let g, g*, and h*, h, be (finite or infinite) sequences

such that the sets ag and ah (integral a,) are dense in G and H, respectively.
Then we may use these sequences in place of dense sequences in defining the topology
inGoH.

Let h, h, be either the above sequence h, h*, ..., or a dense sequence
in H. Arrange all ag in u sequence 0, 0, Let N(U; V) be defined
in terms of the sets {}, {h/, and N*(U; V), in terms of the sets lg}, lh}.
It is sufficient to show that these two sets of neighborhoods give the same
topology in T. As the g occur among the 0, it is clear that any N contains
an N*; we must prove the converse.

Let P (0, h) nd P (g*, h,) define the sequences of pirs defining
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*the N and the N*. If ,, ag, set re(i) la ]. Then ,,. V is con-

rained in re(i) terms of the form g. (A= V), and Q(U, V) is contained in re(i) + 2
terms of forms appearing (except for the =t=) in N*(U Vz). For each i we
may choose re(i) + 2 numbers 1(i), m()+2(i) such that Ck(i) # (j)
whenever i # j, and the/c-th part into which Q is split corresponds to part of
Q() Then if the U and V are chosen small enough, we will have

m() . V(0,
k,=l

and hence N(U,; Vz) N*(U, V,), as required.

17. Relation to linear spaces; examples. We shall show that whenever the
definitions of tensor products in Parts II and III both apply, they coincide.
THEOREM 34. If G and H are sequence-separable topological linear spaces,

then their topological tensor product T is the same as their topological reduced tensor
product T*.

Let g X hi and gi.hi denote elements of T* and T, respectively. Set
(g X hi) gi. hi we shall show that is a topological isomorphism. To
show that is uniquely defined, we must show that ag. h g. ah for any real a;
but this follows from the continuity of g.h (see 10). is a homomorphism;
we shall show that it is continuous. Use N(U V) in T and N*(U V) in T*.
Given N(U; V), we wish to find N*(U; V’) mapping into it. From (10.12)
and (16.1) it is apparent that we may use Ui U,., V V.
Next we show that for any N* N*(Uz V), there is an N N(U; V)

oh(N*). Say 01,0-, and , , are the dense sequences used in G and
H, and P1, P., ..., P (0,, ,), the pairs. By 14, (5), we may choose
for each i a number ai such that 0, is in aU_, and a number b such that

is in bV_l. By yon Neumann, loc. cir., Theorem 1 (with n 1), there
is a V’( such that aiV’( V,_, and a U’( such that biU’( U,_. Choose

Now

0,," V + U., + U.V c a,U,_.. 1 V,_ + 1

(U_. V_ + U_ V_ + U V);
hence N c q(N*).

Clearly maps T* into the whole of T. When we have shown that is (1-1),
the proof will be completed. Let T’ be the discrete tensor product of G and H;
use g o h here. Take any a* )-’]gi h # 0 in T*; then a’ gi hi is a cor-
responding element of T’. There is an N* N*(Ut V) which does not con-
tain a*. Construct U’I, U, and V’I, V,... by the method given above,
and set

N’ (0 ,o + L, +
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The map (g o h) "g’ h of T’ into T* is uniquely defined. By the
choice of the U and V, (N’) c N*; hence a’ is not in N’. Therefore, by the
property (*) in 16, a is not 0, so that the corresponding element g.h of
T is 0. Consequently a* 0 implies (a*) 0, and is (1-1).
]xamples. That the topology in (10.12) cannot be used in the general case

is shown by the example Io o Rl. A neighborhood U of 0 in I0 is 0 itself; hence
U. V 0. V 0, and Io o Rl would be discrete; the multiplication a.g would
not be continuous. However, the sets 1. V form a neighborhood system in
Io o R1. In fact, if G has a finite number of generators 1, ,, then the sets

(17.1) 0" V +..- + 0,," V. (V1, V,, neighborhoods in H)

form a neighborhood system in G o H.
(compare Theorem 26).

This is an easy consequence of Theorem 33
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