categories - Category Theory list
 help / color / mirror / Atom feed
From: ptj@maths.cam.ac.uk
To: "Jirí Adámek" <j.adamek@tu-bs.de>
Cc: Categories mailing list <categories@mta.ca>
Subject: Re: Non-cartesian closedness of Met
Date: 18 Dec 2022 13:04:34 +0000	[thread overview]
Message-ID: <E1p7SEY-000150-TN@rr.mta.ca> (raw)

Dear Jirka,

That's an interesting idea, but I'm having difficulty making it work
in practice. It seems to me that the most you can get from considering
morphisms from 2 is that the metric on [X,Y] must satisfy
d(f,g) \geq sup_x d(fx,gx) -- to get the reverse inequality you would 
need to impose the L_1 metric on the product 2 x X. And that
inequality is the wrong way round for showing that the transpose
of addition on R is nonexpansive.

Best regards,
Peter

On Dec 16 2022, Jirí Adámek wrote:

>Hi Peter,
>
>If Met is a CCC, then [X,Y] has as elements all morphisms from X to Y
>(use the adjoint transposes of morphisms from 1 to [X,Y]). And the 
>distance of morphisms f,g is sup_x d(fx,gx) (use the adjoint transposes
>of morphisms from two-element spaces to [X,Y]).
>
>However, addition of real numbers is not nonexpansive from R x R to R, 
>although its curred form from R to [R,R] is. This is a contradiciotn.
>
>Best regards,
>Jiri
>
>On Fri, 16 Dec 2022, ptj@maths.cam.ac.uk wrote:
>
>> Let Met denote the category of metric spaces and nonexpansive maps.
>> It's well known that if we equip the product of two metric spaces
>> with the L_{\infty} metric (the max of the distances in the two
>> coordinates), we get categorical products in Met; alternatively,
>> if we impose the L_1 metric on the product (the sum of the two
>> coordinate distances), we get a monoidal closed structure, at least
>> if we weaken the usual definition of a metric by allowing metrics to
>> take the value \infty.
>>
>> It's intuitively obvious that the cartesian monoidal structure on Met
>> can't be closed. But I've never (until I wrote one down today!) seen
>> a formal proof of this; does anyone know if it exists anywhere in the
>> literature? My proof is not particularly elegant: it amounts to showing
>> that a particular coequalizer in Met is not preserved by a functor of
>> the form (-) x Y.
>>
>>


[For admin and other information see: http://www.mta.ca/~cat-dist/ ]


             reply	other threads:[~2022-12-18 13:04 UTC|newest]

Thread overview: 4+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2022-12-18 13:04 ptj [this message]
  -- strict thread matches above, loose matches on Subject: below --
2022-12-17  9:20 Dirk Hofmann
2022-12-16 16:41 ptj
2022-12-19  8:50 ` Jirí Adámek

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=E1p7SEY-000150-TN@rr.mta.ca \
    --to=ptj@maths.cam.ac.uk \
    --cc=categories@mta.ca \
    --cc=j.adamek@tu-bs.de \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).