
Reducing Inductive-Inductive Types
to Indexed Inductive Types

Thorsten Altenkirch1, Ambrus Kaposi2, András Kovács2, and Jakob von
Raumer1

1 University of Nottingham, United Kingdom
thorsten.altenkirch@nott.ac.uk, jakob@von-raumer.de

2 Eötvös Loránd University, Budapest, Hungary
{akaposi, kovacsandras}@inf.elte.hu

1 Motivation
Many dependently typed languages which are built on foundations like the calculus of construc-
tions (CoC) provide support for indexed inductive types. These are type families which are
inductively defined using constructors that create an instance over arbitrary elements of the
base type (the type of N-indexed vectors being a prominent example). Most of these languages,
e. g. Coq [2] and Lean [3], don’t allow for so called inductive-inductive types in which, for
example, the user mutually defines a type A and a family B in which A may appear in the
index, and where constructors of A and B may refer to the constructors of each other.

Use cases for inductive-inductive types encompass important applications like the internal-
ization of the syntax of dependent type theory itself (“type theory in type theory” [1]) and
the definition of the Cauchy construction of the real numbers [7]. We thus ask the question
whether inductive-inductive types can be emulated in a language that only provides indexed
inductive types, that is, most importantly, how to construct an appropriate eliminator for
these types. The quesion whether this is possible has been brought up in previous studies on
inductive-inductive types [6, 4].

2 Approach
We are given a list of sorts which we want to define and a list of constructors, each with
potential references to others. First we define the category of typed algebras, of which we aim
to construct the initial element. Next, we also define untyped algebras which we obtain by
erasing all the indices from sorts and constructors. The initial object can be constructed using
indexed induction only. To make up for the missing indexing in the untyped algebras, we
introduce an inductively defined well-typedness predicate which contains the information that
a given element of an untyped sort is really indexed by a given index element. The desired
initial object of the category of typed algebras is then given by using this predicate to filter for
well-typed elements. To prove initiality, we construct an inductive relation between elements
of the initial untyped algebra and elements of an arbitrary typed algebra. We then show that
this relation is functional.

3 Results & Future Work
The approach has been formalized for the example of a fragment of an inductive-inductive
syntax of type theory in Agda, and ported to Lean. We aim to use Lean’s meta-language [5] to



Reducing Inductive-Inductive Types Altenkirch, Kaposi, Kovács, and von Raumer

automate the construction and provide a user-defined command to create inductive-inductive
types.

4 Example

As a first example, we looked at the type Con of contexts and the type Ty of types in a
formalized syntax of a type theory, with a constructor nil : Con for an empty context, ext :∏

Γ:Con Ty(Γ) → Con for context extension, unit :
∏

Γ:Con Ty(Γ) for an atomic unit type and
pi :

∏
Γ:Con,A:Ty(Γ) Ty(ext(Γ, A)) → Ty(Γ) for a Π-type. For this example the typed and untyped

algebras are represented by the following Lean code:

structure CT :=
(C : Type u)
(T : C → Type u)
(nil : C)
(ext : Π Γ, T Γ → C)
(unit : Π (Γ : C), T Γ)
(pi : Π Γ A,
T (ext Γ A) → T Γ)

structure CT′ :=
(C : Type u)
(T : Type u)
(nil : C)
(ext : C → T → C)
(unit : C → T)
(pi : C → T → T → T)

inductive S′0 : bool → Type u
| nil : S′0 ff
| ext : S′0 ff → S′0 tt → S′0 ff
| unit : S′0 ff → S′0 tt
| pi : S′0 ff → S′0 tt → S′0 tt → S′0 tt

parameters (M : CT)
def rel_arg : bool → Type u
| ff := M.C
| tt := Σ γ, M.T γ
inductive rel : Π b, S′0 b → rel_arg b → Prop
| nil : rel ff S′0.nil M.nil
| ext : Π Γ A γ a, rel ff Γ γ → rel tt A 〈γ, a〉

→ rel ff (S′0.ext Γ A) (M.ext γ a)
| unit : Π Γ γ, rel ff Γ γ → rel tt (S′0.unit Γ) 〈γ, M.unit γ〉
| pi : Π Γ A B γ a b, rel ff Γ γ → rel tt A 〈γ, a〉 →

rel tt B 〈M.ext γ a, b〉 → rel tt (S′0.pi Γ A B) 〈γ, M.pi γ a b〉

References
[1] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types.

In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 18–29. ACM, 2016.

[2] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Ed-
uardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof
assistant reference manual: Version 6.1. 1997.

[3] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated Deduc-
tion, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 378–388. Springer, 2015.

[4] Gabe Dijkstra. Quotient inductive-inductive definitions. PhD thesis, University of Nottingham,
2017.

[5] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A
metaprogramming framework for formal verification. Proceedings of the ACM on Programming
Languages, 1(ICFP):34, 2017.

[6] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.
[7] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-

matics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

2

http://homotopytypetheory.org/book

	Motivation
	Approach
	Results & Future Work
	Example

