Discussion of Homotopy Type Theory and Univalent Foundations
 help / Atom feed
From: Michael Shulman <shulman@sandiego.edu>
To: Valery Isaev <valery.isaev@gmail.com>
Cc: Jon Sterling <jon@jonmsterling.com>,
	 "HomotopyTypeTheory@googlegroups.com"
	<homotopytypetheory@googlegroups.com>
Subject: Re: [HoTT] New theorem prover Arend is released
Date: Sat, 10 Aug 2019 02:42:12 -0700
Message-ID: <CAOvivQzzLHnq+bXBzkFv3tST0GEUo4f2zmdj025LTaq+EMB7CQ@mail.gmail.com> (raw)
In-Reply-To: <CAA520fuU-BEcdg6mrAkTxmqpDhG9pHpD-1a=X7ZU-n8q57dKsg@mail.gmail.com>

There is a bit more subtlety here than is evident from the brief
description, since everything has to happen in an arbitrary slice
category of the model category.  But although the slices of a
cartesian model category are not in general again cartesian, they are
enriched model categories over the base, and so I think I agree that
this works since I lives in the base.

However, section 2.2 of https://valis.github.io/doc.pdf also appears
to assert that an equivalence can be made into a line in the universe
for which coercing along the line is *definitionally* equal to the
action of the given equivalence, and such that the line associated to
the identity equivalence is definitionally constant.  The latter seems
like it might be obtainable by a lifting property, but I don't
immediately see how to obtain the former in a model category?

-- 
You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group.
To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/HomotopyTypeTheory/CAOvivQzzLHnq%2BbXBzkFv3tST0GEUo4f2zmdj025LTaq%2BEMB7CQ%40mail.gmail.com.

  reply index

Thread overview: 20+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2019-08-06 22:16 Валерий Исаев
2019-08-07 15:01 ` Andrej Bauer
2019-08-07 22:13 ` Nicolai Kraus
2019-08-08  9:55   ` Valery Isaev
2019-08-10  9:47     ` Michael Shulman
2019-08-10 12:30       ` Valery Isaev
2019-08-10 12:37       ` Valery Isaev
2019-08-08 12:20 ` Jon Sterling
2019-08-08 12:29   ` Bas Spitters
2019-08-08 14:44     ` Valery Isaev
2019-08-08 15:11       ` Jon Sterling
2019-08-08 15:22         ` Valery Isaev
2019-08-10  9:42           ` Michael Shulman [this message]
2019-08-10 12:24             ` Valery Isaev
2019-08-10 23:37               ` Michael Shulman
2019-08-11 10:46                 ` Valery Isaev
2019-08-11 12:39                   ` Michael Shulman
2019-08-11 16:55                     ` Michael Shulman
2019-08-12 14:44                       ` Daniel R. Grayson
2019-08-12 17:32                         ` Michael Shulman

Reply instructions:

You may reply publically to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=CAOvivQzzLHnq+bXBzkFv3tST0GEUo4f2zmdj025LTaq+EMB7CQ@mail.gmail.com \
    --to=shulman@sandiego.edu \
    --cc=homotopytypetheory@googlegroups.com \
    --cc=jon@jonmsterling.com \
    --cc=valery.isaev@gmail.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link

Discussion of Homotopy Type Theory and Univalent Foundations

Archives are clonable: git clone --mirror http://inbox.vuxu.org/hott

Newsgroup available over NNTP:
	nntp://inbox.vuxu.org/vuxu.archive.hott


AGPL code for this site: git clone https://public-inbox.org/ public-inbox