Trivial cofibration-fibration factorization with one application

Introduction

This note contains two results.

We first describe a trivial cofibration-fibration factorisation of a map between cubical set as an
inductive definition (for cartesian cubical sets). Using this decomposition, and the results in Section 2
of [1], it is then possible to define a a model structure (the type-theoretic model structure) on cartesian
cubical sets. The fibrant objects for this model structure form a model of dependent type theory with
univalence, and this is most directly seen using internal language of a presheaf model.

We also have a canonical notion of geometric realization of a cubical set, where the formal interval
I is interpreted by the unit interval [0, 1], and it is natural to ask if this geoemtric realization defines
an equivalence of Quillen model structure. The second part of this note describes a negative result of
Christian Sattler. Our presentation uses the explicit description of the trivial cofibration-fibration given
in the first part. If we define @ to be the generic symmetric square, then the geometric realization of @
should be like a triangle, and so should be contractible. We explain however (following Sattler) that the
canonical map () — 1 cannot be an equivalence for the type-theoretic model structure.

1 Notations

The objects of the base category I, J, K, ... are finite set of names (disjoint from 0, 1) written z,y, z, . . ..
We supposed that we have a fresh name function on names and write I+ the set I where we have added
a fresh name. A map f: J — I is a set theoretic function f: I — JU{0,1}. We have a projection map
p:JT — J which corresponds to the inclusion J — J U {0, 1}.

If f:J — I we define in a functorial way f:JT — IT.

The formal interval is defined by I(J) = J U {0,1}.

We let 2(J) to be the set of decidable sieves on I.

If k is in I(J) we have a map [k] : J — JT which sends the fresh name to k. We have p[k] = 1.

A square in a cubical set can be written as an object a(x,y) which depends of two names z and y.
The edges of this square are then a(0,0),a(0,1),a(1,0) and a(1,1) and the diagonal (in the direction of
name z) is a(z, z).

2 Fibrations

Given a cubical set B, a “dependent presheaf F over B is given by a presheaf on the category of elements
of B. Tt is thus given by a family of sets F(v) for v in B(I) with restriction maps u — uf, E(v) — E(vf)
for f: J — I. We can then define the total space ¥ B E and the projection map ¥ B E — B.

We express when this projection map is a fibration.

We first present the definition using freely the internal language of presheaf models. In this language
we see F as a dependent family E(v) for v : B. We also have a family of subsingletons [¢)] = {tt | ¥}
for ¢ : Q. We define E to be a fibration iff there is an operation fz which given v : B! and k : I and a
partial section

v:IGE: D Vi=k — Evy(i)

builds a total section fgov : II(i : I) E~(7) such that fgv extends v, i.e. Y Vi=k= fgvi=vitt

This expresses the right lifting property w.r.t. generating trivial cofibrations, with an explicit lifting
operation.



A simpler notion, which is equivalent, is to have a composition operation. Given ~ : B! and k,l : I
and a partial section
v : D Vi=Ek — Evy(i)

the operation cf!v builds an element in E~(l) such that 1) = k7o = v [ tt and c7Fv =0 k tt.
Given a composition operation ¢z we can define a filling operation fz v = A(i : I)ck™ v.
Let us unfold these definitions in the presheaf model.

Given v in B(J™") (this corresponds to ) and k in I(J) and u, in E(v[k]) and ¢ in Q(J) and a family
of elements uy in E(vf) for f: K — J* satisfying ¢)pf = 1 and such that upg = usy if g : L — K and
upkg = urg, for g : K — J such that 1g = 1, we should find a filling, that is an element fg uy (v, u)
in E(v) such that (fg ur (¥,u))k] = ur and (fg ur (¥,u))f = uy whenever ¢pf = 1. Furthermore
(fe ur (V,u)g™ = fg urg (Yg,ug™) if 1bg # 1. The pair uy, (1, u) corresponds to the partial section in
the internal definition.

The composition operation, under the same hypotheses, and given another element [ # k in I(J), is
required to find an element comp*~!(ux, v, u) = u; in E(v[l]) such that wg = uy, if g : K — J satisfies
g =1 and wjg = uryg if kg = lg. (Note that we have upg = upy = upjy = wg if both conditions g = 1
and kg = lg hold.) Furthermore comp® ! (uy, 1, u)g = comp*9=* (u;.g,1g,ug™) if kg # lg and g # 1.

For the trivial cofibration-fibration factorization, one intuition is that we “force” a map ¢ : A — B
to become a fibration by adding in a “free” way (with constructor) a composition operation.

3 Trivial cofibration-fibration factorization

Let 0 : A — B be a map of cubical sets. We explain how to build a trivial cofibration-fibration
factorization of this map.

We first define a family of sets F'(v) for v in B(J) together with maps F(v) — F(vf) for f:J — I.

(This will be an upper approximation of a dependent type E over B and the desired factorization
will be of the foom A - ¥ B E — B.)

This is defined inductively:

e incain F(o a) if a is in A(])

o comp® ! (uy, 1, u,v) in F(v[l]) if up in F(v[k]) and k # [ in I(J) and v in B(J*) and ¢ # 1 in Q(J)
and u is a family of elements uy in F(vf) for f: K — J* such that ¢pf = 1.

We then define, for g : L — J and w in B(J) and u in E(w) an element ug in E(wg):
e (inc a)g = inc (ag)

o (comp* ! (uy, b, u,v))g = compt9=19 (uyg,1g,ugt, vgt) if kg # lg and 1hg # 1 where (ug™), =
ug+hifg:K—>Jandh:L—>K+

o (comp*~!(ug, 1, u,v))g = upg if kg =lg
b (Compk%l(uk7w7uvv))g = U[g if ,(/)g =1

Note that the two last cases may happen at the same time: we can have kg = lg and ¥g = 1 but we
fix then the result to be ugg.
We define now inductively a subset E(v) of F(v)

e incaisin F(o a)

o comp® ! (uy, 1, u,v) is in E(v[l]) provided uy is in E(v[k]) and uy is in E(vf) for f: K — J* such
that ¥pf =1 and up)y = ugg if g : K — J such that ¢»g =1 and uyg = uys, if g: L — K.



It can then be checked that if u is in F(v) and g : K — J then ug is in E(vg) and we have
(ug)h = u(gh) in E(vgh) if h: L — K.

In this way, we define a fibrant type family E over B, of total space T, and we have a factorization
A—T, a— (o a,inca) and T — B, (v,u) — v of the given map o : A — B.

It is possible to check that A — T has the left lifting property w.r.t. any fibration.

It would actually be possible to take the direct definition of E as primitive. (This is what we did in
our cubical type theory paper.) One would define directly E(v) by the clauses:

e incain E(o a)if aisin A(I)

o comp ! (uy, b, u,v) in E(v[l]) if ug in E(v[k]) and k # 1 in I(J) and v in B(JT) and  # 1 in Q(J)
and v is a family of elements uy in F(vf) for f: K — J* such that ¢¥ppf = 1, with the conditions
urg = upyg and upg = ugpy if g: L — K

and at the same time
e (inc a)g = inc (ag)
o (comp~!(ug, 1, u,v))g = compkI = (upg, g, ugt,vgt) if kg # lg and g # 1 where (ug™), =
ugrp if g: K — Jand h: L — K+

o (comp*~!(up, b, u,v))g = upg if kg =lg

* (COmpki}l(uk,’(/},’qu))g = Upg if g =1

Note that there is no ambiguity in the last two cases, since we have urg = upy, = up)g if kg = lg and
g =1.

This definition looks similar to an inductive-recursive definition: we define at the same time the sets
E(v) and the restriction maps E(v) — E(vg).

4 A property of cubical sets

We say that a cube c(x,y, z) connects a square a(x,y) to a square b(x,y) if we have c¢(x,y,0) = a(x,y)
and c(z,y,1) = b(x,y) or c(z,y,1) = a(z,y) and c(x,y,0) = b(z,y). (This defines a homotopy between
a and b.)

We consider the following property of cubical sets, written P(A): if we have a square a(z,y) in A(x,y)
such that a(z,y) = a(y,x) then we can find a sequence of cubes ci(z,y,z) which connects a(z,y) to a
constant square in a symmetric way, i.e. cx(z,y,2) = ¢ (y,x, z) for all k.

Lemma 4.1 If u: A — B has a section then P(A) implies P(B).

Proof. If v is a section of v and b(x,y) = b(y, z) is a symmetric square in B(z,y) then vb is a symmetric
square in A(z,y) and we have a sequence of homotopies in A which can be mapped by w. O

Proposition 4.2 If o : A — B is an equivalence then P(A) implies P(B).

Proof. o being an equivalence means by definition that if we consider a trivial cofibration-fibration
factorisation A — 1" — B of ¢ then the fibration T' — B is a trivial fibration.

We Have given above a concrete description of T" and the map A — T where T is described as a total
space of a dependent family B+ F.

E(v) is defined inductively as follows: an element of F(v) for v in E(J) is either

e inca,ain A(J) in E(o a)

e comp* ! (uy, p,u,v) in E(v[l]) with k # [ in I(J) with u; in E(v[k]) and ¢ # 1 in Q(J) and u
partial element of extent ¢ (the exact definition will not matter here) and v in E(JT)

We prove that we always have P(A) implies P(T) (even if ¢ is not an equivalence).
Indeed a symmetric square in T is



e cither of the form (o a,inc a) where a is a symmetric square in A, and we can conclude using P(A)

e or of the form (v(z,y,1),comp*~!(a,p,u, (z)v(x,y,2))) with k # [ in I(z,y). This is symmet-

ric in x,y so we should have (k,I) = (0,1) or (1,0) and a(z,y) = a(y,z) and v(z,y,z) =
v(y,x, z). This square is then homotopic to (v(z,y,k),a) by a cube symmetric in z,y, namely
(v(x,y,t), comp*~t(a, ¢, u, (z)v(z,y,2))) and we can conclude by induction. (We write z the fresh
name for z,y and it is bound by the operation comp.)

So we have P(A) implies P(T).

Note that the homotopy can go from 0 to 1 (if £k = 0) or from 1 to 0 (if ¥ = 1) and we work with non
necessarily fibrant cubical sets.

If now T — B is a trivial fibration, then it has a (strict) section and we conclude by the previous
Lemma. O

5 Application

Let now @ be the quotient of Yon(z,y) by swapping x and y. Concretely @ can be seen as a nominal
set with only one primitive symmetric square g(x,y).

The set () has 3 elements ¢(0,0),¢(1,1) and ¢(1,0) = ¢(0,1).

The set Q(z) contains Q() and has also for elements ¢(0,z) = ¢(z,0),¢(1,z) = q(z, 1), ¢(z, z).

In general the set Q(J) has for elements ¢(¢,j) = ¢(j, ) where ¢ and j vary over 0, 1 and the elements
of J.

If @ — 1 is an equivalence, then, by 3 out of 2, any global point 1 — @ (for instance ¢(0,0)) is also
an equivalence. Since we trivially have P(1), we should also have P(Q) by the Proposition.

But any cube b(z,y, z) in @ such that b(z,y,0) = g(x,y) has to be b(z,y, z) = q(z,y) and so it is
constant in z and so we cannot have P(Q).

So @ — 1 is not a weak equivalence.

Remark 1: if we have connections we have P(Q) since we can define b(z,y, 2) = a(z V 2,y V z) such
that b(z,y,0) = a(z,y) and b(z,y,1) = a(1,1) and b(zx,y, z) = by, x, 2).

Remark 2: it looks like the Lemma is also valid for cubical sets with connections.

Remark 3: the Lemma should also be valid for de Morgan algebra cubes but where we replace the
symmetric square by the symmetric line L containing a line {(x) = (1 — z): this line L is not equivalent
to 1.

Remark 4: it follows from this result that the fibrant replacement of ) is not contractible. It is
possible to describe the fibrant replacement of @ — R(Q) in a direct combinatorial way. It follows from
the argument that we dont have any homotopy Q x I — R(Q) which connects the generic symmetric
square ¢q(z,y) to a constant square. But though this is a purely combinatorial result, it is not easy to
see directly why it holds.
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