Trivial cofibration-fibration factorization with one application

Introduction

This note contains two results.

We first describe a trivial cofibration-fibration factorisation of a map between cubical set as an inductive definition (for *cartesian* cubical sets). Using this decomposition, and the results in Section 2 of [1], it is then possible to define a model structure (the *type-theoretic* model structure) on cartesian cubical sets. The fibrant objects for this model structure form a model of dependent type theory with univalence, and this is most directly seen using internal language of a presheaf model.

We also have a canonical notion of geometric realization of a cubical set, where the formal interval I is interpreted by the unit interval [0, 1], and it is natural to ask if this geoemtric realization defines an equivalence of Quillen model structure. The second part of this note describes a negative result of Christian Sattler. Our presentation uses the explicit description of the trivial cofibration-fibration given in the first part. If we define Q to be the *generic* symmetric square, then the geometric realization of Q should be like a triangle, and so should be contractible. We explain however (following Sattler) that the canonical map $Q \to 1$ cannot be an equivalence for the type-theoretic model structure.

1 Notations

The objects of the base category I, J, K, \ldots are finite set of names (disjoint from 0, 1) written x, y, z, \ldots . We supposed that we have a fresh name function on names and write I^+ the set I where we have added a fresh name. A map $f: J \to I$ is a set theoretic function $f: I \to J \cup \{0, 1\}$. We have a projection map $p: J^+ \to J$ which corresponds to the inclusion $J \to J \cup \{0, 1\}$.

If $f: J \to I$ we define in a functorial way $f^+: J^+ \to I^+$.

The formal interval is defined by $\mathbb{I}(J) = J \cup \{0, 1\}.$

We let $\Omega(J)$ to be the set of *decidable* sieves on *I*.

If k is in $\mathbb{I}(J)$ we have a map $[k]: J \to J^+$ which sends the fresh name to k. We have $p[k] = 1_J$.

A square in a cubical set can be written as an object a(x, y) which depends of two names x and y. The edges of this square are then a(0,0), a(0,1), a(1,0) and a(1,1) and the diagonal (in the direction of name z) is a(z, z).

2 Fibrations

Given a cubical set B, a "dependent presheaf E over B is given by a presheaf on the category of elements of B. It is thus given by a family of sets E(v) for v in B(I) with restriction maps $u \mapsto uf$, $E(v) \to E(vf)$ for $f: J \to I$. We can then define the total space $\Sigma B E$ and the projection map $\Sigma B E \to B$.

We express when this projection map is a *fibration*.

We first present the definition using freely the internal language of presheaf models. In this language we see E as a dependent family E(v) for v : B. We also have a family of subsingletons $[\psi] = \{ \mathsf{tt} \mid \psi \}$ for $\psi : \Omega$. We define E to be a *fibration* iff there is an operation f_E which given $\gamma : B^{\mathbb{I}}$ and $k : \mathbb{I}$ and a partial section

$$v: \Pi(i:\mathbb{I})[\psi \lor i = k] \to E\gamma(i)$$

builds a total section $f_E v : \Pi(i : \mathbb{I}) E \gamma(i)$ such that $f_E v$ extends v, i.e. $\psi \lor i = k \Rightarrow f_E v \ i = v \ i$ tt.

This expresses the right lifting property w.r.t. generating trivial cofibrations, with an explicit lifting operation.

A simpler notion, which is equivalent, is to have a *composition* operation. Given $\gamma : B^{\mathbb{I}}$ and $k, l : \mathbb{I}$ and a partial section

$$v: \Pi(i:\mathbb{I})[\psi \lor i=k] \to E\gamma(i)$$

the operation $c_E^{k \to l} v$ builds an element in $E\gamma(l)$ such that $\psi \Rightarrow c_E^{k \to l} v = v \ l$ tt and $c_E^{k \to k} v = v \ k$ tt.

Given a composition operation c_E we can define a filling operation $f_E v = \lambda(i:\mathbb{I})c_E^{k\to i} v$.

Let us unfold these definitions in the presheaf model.

Given v in $B(J^+)$ (this corresponds to γ) and k in $\mathbb{I}(J)$ and u_k in E(v[k]) and ψ in $\Omega(J)$ and a family of elements u_f in E(vf) for $f: K \to J^+$ satisfying $\psi pf = 1$ and such that $u_f g = u_{fg}$ if $g: L \to K$ and $u_{[k]g} = u_k g$, for $g: K \to J$ such that $\psi g = 1$, we should find a *filling*, that is an element $f_E u_k (\psi, u)$ in E(v) such that $(f_E u_k (\psi, u))[k] = u_k$ and $(f_E u_k (\psi, u))f = u_f$ whenever $\psi pf = 1$. Furthermore $(f_E u_k (\psi, u))g^+ = f_E u_k g (\psi g, ug^+)$ if $\psi g \neq 1$. The pair $u_k, (\psi, u)$ corresponds to the partial section in the internal definition.

The composition operation, under the same hypotheses, and given another element $l \neq k$ in $\mathbb{I}(J)$, is required to find an element $\operatorname{comp}^{k \to l}(u_k, \psi, u) = u_l$ in E(v[l]) such that $u_l g = u_{[l]g}$ if $g: K \to J$ satisfies $\psi g = 1$ and $u_l g = u_k g$ if kg = lg. (Note that we have $u_k g = u_{[k]g} = u_{[l]g} = u_l g$ if both conditions $\psi g = 1$ and kg = lg hold.) Furthermore $\operatorname{comp}^{k \to l}(u_k, \psi, u)g = \operatorname{comp}^{kg \to kl}(u_k g, \psi g, ug^+)$ if $kg \neq lg$ and $\psi g \neq 1$.

For the trivial cofibration-fibration factorization, one intuition is that we "force" a map $\sigma : A \to B$ to become a fibration by adding in a "free" way (with constructor) a composition operation.

3 Trivial cofibration-fibration factorization

Let $\sigma : A \to B$ be a map of cubical sets. We explain how to build a trivial cofibration-fibration factorization of this map.

We first define a family of sets F(v) for v in B(J) together with maps $F(v) \to F(vf)$ for $f: J \to I$. (This will be an upper approximation of a dependent type E over B and the desired factorization will be of the form $A \to \Sigma B E \to B$.)

This is defined inductively:

- inc a in $F(\sigma a)$ if a is in A(I)
- $\operatorname{comp}^{k \to l}(u_k, \psi, u, v)$ in F(v[l]) if u_k in F(v[k]) and $k \neq l$ in $\mathbb{I}(J)$ and v in $B(J^+)$ and $\psi \neq 1$ in $\Omega(J)$ and u is a family of elements u_f in F(vf) for $f: K \to J^+$ such that $\psi pf = 1$.

We then define, for $g: L \to J$ and w in B(J) and u in E(w) an element ug in E(wg):

- (inc a)g = inc (ag)
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = \operatorname{comp}^{kg \to lg}(u_kg, \psi g, ug^+, vg^+)$ if $kg \neq lg$ and $\psi g \neq 1$ where $(ug^+)_h = u_{g^+h}$ if $g: K \to J$ and $h: L \to K^+$
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = u_k g$ if kg = lg
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = u_{[l]g}$ if $\psi g = 1$

Note that the two last cases may happen at the same time: we can have kg = lg and $\psi g = 1$ but we fix then the result to be u_kg .

We define now inductively a subset E(v) of F(v)

- inc a is in $E(\sigma a)$
- $\operatorname{comp}^{k \to l}(u_k, \psi, u, v)$ is in E(v[l]) provided u_k is in E(v[k]) and u_f is in E(vf) for $f: K \to J^+$ such that $\psi pf = 1$ and $u_{[k]g} = u_k g$ if $g: K \to J$ such that $\psi g = 1$ and $u_f g = u_{fg}$ if $g: L \to K$.

It can then be checked that if u is in E(v) and $g: K \to J$ then ug is in E(vg) and we have (ug)h = u(gh) in E(vgh) if $h: L \to K$.

In this way, we define a fibrant type family E over B, of total space T, and we have a factorization $A \to T$, $a \mapsto (\sigma \ a, \text{inc } a)$ and $T \to B$, $(v, u) \mapsto v$ of the given map $\sigma : A \to B$.

It is possible to check that $A \to T$ has the left lifting property w.r.t. any fibration.

It would actually be possible to take the direct definition of E as primitive. (This is what we did in our cubical type theory paper.) One would define directly E(v) by the clauses:

- inc a in $E(\sigma a)$ if a is in A(I)
- $\operatorname{comp}^{k \to l}(u_k, \psi, u, v)$ in E(v[l]) if u_k in E(v[k]) and $k \neq l$ in $\mathbb{I}(J)$ and v in $B(J^+)$ and $\psi \neq 1$ in $\Omega(J)$ and u is a family of elements u_f in F(vf) for $f: K \to J^+$ such that $\psi pf = 1$, with the conditions $u_k g = u_{[k]g}$ and $u_f g = u_{fg}$ if $g: L \to K$

and at the same time

- (inc a)g = inc (ag)
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = \operatorname{comp}^{kg \to lg}(u_kg, \psi g, ug^+, vg^+)$ if $kg \neq lg$ and $\psi g \neq 1$ where $(ug^+)_h = u_{g^+h}$ if $g: K \to J$ and $h: L \to K^+$
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = u_kg$ if kg = lg
- $(\operatorname{comp}^{k \to l}(u_k, \psi, u, v))g = u_{[l]g}$ if $\psi g = 1$

Note that there is no ambiguity in the last two cases, since we have $u_k g = u_{[k]g} = u_{[l]g}$ if kg = lg and $\psi g = 1$.

This definition looks similar to an inductive-recursive definition: we define at the same time the sets E(v) and the restriction maps $E(v) \rightarrow E(vg)$.

4 A property of cubical sets

We say that a cube c(x, y, z) connects a square a(x, y) to a square b(x, y) if we have c(x, y, 0) = a(x, y)and c(x, y, 1) = b(x, y) or c(x, y, 1) = a(x, y) and c(x, y, 0) = b(x, y). (This defines a homotopy between a and b.)

We consider the following property of cubical sets, written P(A): if we have a square a(x, y) in A(x, y)such that a(x, y) = a(y, x) then we can find a sequence of cubes $c_k(x, y, z)$ which connects a(x, y) to a constant square in a symmetric way, i.e. $c_k(x, y, z) = c_k(y, x, z)$ for all k.

Lemma 4.1 If $u : A \to B$ has a section then P(A) implies P(B).

Proof. If v is a section of u and b(x, y) = b(y, x) is a symmetric square in B(x, y) then vb is a symmetric square in A(x, y) and we have a sequence of homotopies in A which can be mapped by u.

Proposition 4.2 If $\sigma : A \to B$ is an equivalence then P(A) implies P(B).

Proof. σ being an equivalence means by definition that if we consider a trivial cofibration-fibration factorisation $A \to T \to B$ of σ then the fibration $T \to B$ is a *trivial* fibration.

We Have given above a concrete description of T and the map $A \to T$ where T is described as a total space of a dependent family $B \vdash E$.

E(v) is defined inductively as follows: an element of E(v) for v in E(J) is either

- inc a, a in A(J) in $E(\sigma a)$
- $\operatorname{comp}^{k \to l}(u_k, \varphi, u, v)$ in E(v[l]) with $k \neq l$ in $\mathbb{I}(J)$ with u_k in E(v[k]) and $\varphi \neq 1$ in $\Omega(J)$ and u partial element of extent φ (the exact definition will not matter here) and v in $E(J^+)$

We prove that we always have P(A) implies P(T) (even if σ is not an equivalence). Indeed a symmetric square in T is

- either of the form (σa , inc a) where a is a symmetric square in A, and we can conclude using P(A)
- or of the form $(v(x, y, l), \mathsf{comp}^{k \to l}(a, \varphi, u, \langle z \rangle v(x, y, z)))$ with $k \neq l$ in $\mathbb{I}(x, y)$. This is symmetric in x, y so we should have (k, l) = (0, 1) or (1, 0) and a(x, y) = a(y, x) and v(x, y, z) = v(y, x, z). This square is then homotopic to (v(x, y, k), a) by a cube symmetric in x, y, namely $(v(x, y, t), \mathsf{comp}^{k \to t}(a, \varphi, u, \langle z \rangle v(x, y, z)))$ and we can conclude by induction. (We write z the fresh name for x, y and it is bound by the operation $\mathsf{comp.}$)

So we have P(A) implies P(T).

Note that the homotopy can go from 0 to 1 (if k = 0) or from 1 to 0 (if k = 1) and we work with non necessarily fibrant cubical sets.

If now $T \to B$ is a *trivial* fibration, then it has a (strict) section and we conclude by the previous Lemma.

5 Application

Let now Q be the quotient of Yon(x, y) by swapping x and y. Concretely Q can be seen as a nominal set with only one primitive symmetric square q(x, y).

The set Q() has 3 elements q(0,0), q(1,1) and q(1,0) = q(0,1).

The set Q(x) contains Q() and has also for elements q(0, x) = q(x, 0), q(1, x) = q(x, 1), q(x, x).

In general the set Q(J) has for elements q(i, j) = q(j, i) where i and j vary over 0, 1 and the elements of J.

If $Q \to 1$ is an equivalence, then, by 3 out of 2, any global point $1 \to Q$ (for instance q(0,0)) is also an equivalence. Since we trivially have P(1), we should also have P(Q) by the Proposition.

But any cube b(x, y, z) in Q such that b(x, y, 0) = q(x, y) has to be b(x, y, z) = q(x, y) and so it is constant in z and so we cannot have P(Q).

So $Q \to 1$ is not a weak equivalence.

Remark 1: if we have connections we have P(Q) since we can define $b(x, y, z) = a(x \lor z, y \lor z)$ such that b(x, y, 0) = a(x, y) and b(x, y, 1) = a(1, 1) and b(x, y, z) = b(y, x, z).

Remark 2: it looks like the Lemma is also valid for cubical sets with connections.

Remark 3: the Lemma should also be valid for de Morgan algebra cubes but where we replace the symmetric square by the symmetric line L containing a line l(x) = l(1 - x): this line L is not equivalent to 1.

Remark 4: it follows from this result that the fibrant replacement of Q is *not* contractible. It is possible to describe the fibrant replacement of $Q \to R(Q)$ in a direct combinatorial way. It follows from the argument that we dont have any homotopy $Q \times \mathbb{I} \to R(Q)$ which connects the generic symmetric square q(x, y) to a constant square. But though this is a purely combinatorial result, it is not easy to see directly why it holds.

References

[1] Ch. Sattler. The equivalence extension property and model structures https://arxiv.org/pdf/1704.06911