
Trivial cofibration-fibration factorization with one application

Introduction

This note contains two results.
We first describe a trivial cofibration-fibration factorisation of a map between cubical set as an

inductive definition (for cartesian cubical sets). Using this decomposition, and the results in Section 2
of [1], it is then possible to define a a model structure (the type-theoretic model structure) on cartesian
cubical sets. The fibrant objects for this model structure form a model of dependent type theory with
univalence, and this is most directly seen using internal language of a presheaf model.

We also have a canonical notion of geometric realization of a cubical set, where the formal interval
I is interpreted by the unit interval [0, 1], and it is natural to ask if this geoemtric realization defines
an equivalence of Quillen model structure. The second part of this note describes a negative result of
Christian Sattler. Our presentation uses the explicit description of the trivial cofibration-fibration given
in the first part. If we define Q to be the generic symmetric square, then the geometric realization of Q
should be like a triangle, and so should be contractible. We explain however (following Sattler) that the
canonical map Q→ 1 cannot be an equivalence for the type-theoretic model structure.

1 Notations

The objects of the base category I, J,K, . . . are finite set of names (disjoint from 0, 1) written x, y, z, . . . .
We supposed that we have a fresh name function on names and write I+ the set I where we have added
a fresh name. A map f : J → I is a set theoretic function f : I → J ∪ {0, 1}. We have a projection map
p : J+ → J which corresponds to the inclusion J → J ∪ {0, 1}.

If f : J → I we define in a functorial way f+ : J+ → I+.
The formal interval is defined by I(J) = J ∪ {0, 1}.
We let Ω(J) to be the set of decidable sieves on I.
If k is in I(J) we have a map [k] : J → J+ which sends the fresh name to k. We have p[k] = 1J .
A square in a cubical set can be written as an object a(x, y) which depends of two names x and y.

The edges of this square are then a(0, 0), a(0, 1), a(1, 0) and a(1, 1) and the diagonal (in the direction of
name z) is a(z, z).

2 Fibrations

Given a cubical set B, a “dependent presheaf E over B is given by a presheaf on the category of elements
of B. It is thus given by a family of sets E(v) for v in B(I) with restriction maps u 7→ uf, E(v)→ E(vf)
for f : J → I. We can then define the total space Σ B E and the projection map Σ B E → B.

We express when this projection map is a fibration.
We first present the definition using freely the internal language of presheaf models. In this language

we see E as a dependent family E(v) for v : B. We also have a family of subsingletons [ψ] = {tt | ψ}
for ψ : Ω. We define E to be a fibration iff there is an operation fE which given γ : BI and k : I and a
partial section

v : Π(i : I)[ψ ∨ i = k]→ Eγ(i)

builds a total section fEv : Π(i : I)Eγ(i) such that fEv extends v, i.e. ψ ∨ i = k ⇒ fE v i = v i tt.

This expresses the right lifting property w.r.t. generating trivial cofibrations, with an explicit lifting
operation.
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A simpler notion, which is equivalent, is to have a composition operation. Given γ : BI and k, l : I
and a partial section

v : Π(i : I)[ψ ∨ i = k]→ Eγ(i)

the operation ck→l
E v builds an element in Eγ(l) such that ψ ⇒ ck→l

E v = v l tt and ck→k
E v = v k tt.

Given a composition operation cE we can define a filling operation fE v = λ(i : I)ck→i
E v.

Let us unfold these definitions in the presheaf model.

Given v in B(J+) (this corresponds to γ) and k in I(J) and uk in E(v[k]) and ψ in Ω(J) and a family
of elements uf in E(vf) for f : K → J+ satisfying ψpf = 1 and such that ufg = ufg if g : L→ K and
u[k]g = ukg, for g : K → J such that ψg = 1, we should find a filling, that is an element fE uk (ψ, u)
in E(v) such that (fE uk (ψ, u))[k] = uk and (fE uk (ψ, u))f = uf whenever ψpf = 1. Furthermore
(fE uk (ψ, u))g+ = fE ukg (ψg, ug+) if ψg 6= 1. The pair uk, (ψ, u) corresponds to the partial section in
the internal definition.

The composition operation, under the same hypotheses, and given another element l 6= k in I(J), is
required to find an element compk→l(uk, ψ, u) = ul in E(v[l]) such that ulg = u[l]g if g : K → J satisfies
ψg = 1 and ulg = ukg if kg = lg. (Note that we have ukg = u[k]g = u[l]g = ulg if both conditions ψg = 1

and kg = lg hold.) Furthermore compk→l(uk, ψ, u)g = compkg→kl(ukg, ψg, ug
+) if kg 6= lg and ψg 6= 1.

For the trivial cofibration-fibration factorization, one intuition is that we “force” a map σ : A → B
to become a fibration by adding in a “free” way (with constructor) a composition operation.

3 Trivial cofibration-fibration factorization

Let σ : A → B be a map of cubical sets. We explain how to build a trivial cofibration-fibration
factorization of this map.

We first define a family of sets F (v) for v in B(J) together with maps F (v)→ F (vf) for f : J → I.
(This will be an upper approximation of a dependent type E over B and the desired factorization

will be of the form A→ Σ B E → B.)
This is defined inductively:

• inc a in F (σ a) if a is in A(I)

• compk→l(uk, ψ, u, v) in F (v[l]) if uk in F (v[k]) and k 6= l in I(J) and v in B(J+) and ψ 6= 1 in Ω(J)
and u is a family of elements uf in F (vf) for f : K → J+ such that ψpf = 1.

We then define, for g : L→ J and w in B(J) and u in E(w) an element ug in E(wg):

• (inc a)g = inc (ag)

• (compk→l(uk, ψ, u, v))g = compkg→lg(ukg, ψg, ug
+, vg+) if kg 6= lg and ψg 6= 1 where (ug+)h =

ug+h if g : K → J and h : L→ K+

• (compk→l(uk, ψ, u, v))g = ukg if kg = lg

• (compk→l(uk, ψ, u, v))g = u[l]g if ψg = 1

Note that the two last cases may happen at the same time: we can have kg = lg and ψg = 1 but we
fix then the result to be ukg.

We define now inductively a subset E(v) of F (v)

• inc a is in E(σ a)

• compk→l(uk, ψ, u, v) is in E(v[l]) provided uk is in E(v[k]) and uf is in E(vf) for f : K → J+ such
that ψpf = 1 and u[k]g = ukg if g : K → J such that ψg = 1 and ufg = ufg if g : L→ K.
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It can then be checked that if u is in E(v) and g : K → J then ug is in E(vg) and we have
(ug)h = u(gh) in E(vgh) if h : L→ K.

In this way, we define a fibrant type family E over B, of total space T , and we have a factorization
A→ T, a 7→ (σ a, inc a) and T → B, (v, u) 7→ v of the given map σ : A→ B.

It is possible to check that A→ T has the left lifting property w.r.t. any fibration.

It would actually be possible to take the direct definition of E as primitive. (This is what we did in
our cubical type theory paper.) One would define directly E(v) by the clauses:

• inc a in E(σ a) if a is in A(I)

• compk→l(uk, ψ, u, v) in E(v[l]) if uk in E(v[k]) and k 6= l in I(J) and v in B(J+) and ψ 6= 1 in Ω(J)
and u is a family of elements uf in F (vf) for f : K → J+ such that ψpf = 1, with the conditions
ukg = u[k]g and ufg = ufg if g : L→ K

and at the same time

• (inc a)g = inc (ag)

• (compk→l(uk, ψ, u, v))g = compkg→lg(ukg, ψg, ug
+, vg+) if kg 6= lg and ψg 6= 1 where (ug+)h =

ug+h if g : K → J and h : L→ K+

• (compk→l(uk, ψ, u, v))g = ukg if kg = lg

• (compk→l(uk, ψ, u, v))g = u[l]g if ψg = 1

Note that there is no ambiguity in the last two cases, since we have ukg = u[k]g = u[l]g if kg = lg and
ψg = 1.

This definition looks similar to an inductive-recursive definition: we define at the same time the sets
E(v) and the restriction maps E(v)→ E(vg).

4 A property of cubical sets

We say that a cube c(x, y, z) connects a square a(x, y) to a square b(x, y) if we have c(x, y, 0) = a(x, y)
and c(x, y, 1) = b(x, y) or c(x, y, 1) = a(x, y) and c(x, y, 0) = b(x, y). (This defines a homotopy between
a and b.)

We consider the following property of cubical sets, written P (A): if we have a square a(x, y) in A(x, y)
such that a(x, y) = a(y, x) then we can find a sequence of cubes ck(x, y, z) which connects a(x, y) to a
constant square in a symmetric way, i.e. ck(x, y, z) = ck(y, x, z) for all k.

Lemma 4.1 If u : A→ B has a section then P (A) implies P (B).

Proof. If v is a section of u and b(x, y) = b(y, x) is a symmetric square in B(x, y) then vb is a symmetric
square in A(x, y) and we have a sequence of homotopies in A which can be mapped by u.

Proposition 4.2 If σ : A→ B is an equivalence then P (A) implies P (B).

Proof. σ being an equivalence means by definition that if we consider a trivial cofibration-fibration
factorisation A→ T → B of σ then the fibration T → B is a trivial fibration.

We Have given above a concrete description of T and the map A→ T where T is described as a total
space of a dependent family B ` E.

E(v) is defined inductively as follows: an element of E(v) for v in E(J) is either

• inc a, a in A(J) in E(σ a)

• compk→l(uk, ϕ, u, v) in E(v[l]) with k 6= l in I(J) with uk in E(v[k]) and ϕ 6= 1 in Ω(J) and u
partial element of extent ϕ (the exact definition will not matter here) and v in E(J+)

We prove that we always have P (A) implies P (T ) (even if σ is not an equivalence).
Indeed a symmetric square in T is
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• either of the form (σ a, inc a) where a is a symmetric square in A, and we can conclude using P (A)

• or of the form (v(x, y, l), compk→l(a, ϕ, u, 〈z〉v(x, y, z))) with k 6= l in I(x, y). This is symmet-
ric in x, y so we should have (k, l) = (0, 1) or (1, 0) and a(x, y) = a(y, x) and v(x, y, z) =
v(y, x, z). This square is then homotopic to (v(x, y, k), a) by a cube symmetric in x, y, namely
(v(x, y, t), compk→t(a, ϕ, u, 〈z〉v(x, y, z))) and we can conclude by induction. (We write z the fresh
name for x, y and it is bound by the operation comp.)

So we have P (A) implies P (T ).
Note that the homotopy can go from 0 to 1 (if k = 0) or from 1 to 0 (if k = 1) and we work with non

necessarily fibrant cubical sets.
If now T → B is a trivial fibration, then it has a (strict) section and we conclude by the previous

Lemma.

5 Application

Let now Q be the quotient of Y on(x, y) by swapping x and y. Concretely Q can be seen as a nominal
set with only one primitive symmetric square q(x, y).

The set Q() has 3 elements q(0, 0), q(1, 1) and q(1, 0) = q(0, 1).
The set Q(x) contains Q() and has also for elements q(0, x) = q(x, 0), q(1, x) = q(x, 1), q(x, x).
In general the set Q(J) has for elements q(i, j) = q(j, i) where i and j vary over 0, 1 and the elements

of J .
If Q→ 1 is an equivalence, then, by 3 out of 2, any global point 1→ Q (for instance q(0, 0)) is also

an equivalence. Since we trivially have P (1), we should also have P (Q) by the Proposition.
But any cube b(x, y, z) in Q such that b(x, y, 0) = q(x, y) has to be b(x, y, z) = q(x, y) and so it is

constant in z and so we cannot have P (Q).
So Q→ 1 is not a weak equivalence.

Remark 1: if we have connections we have P (Q) since we can define b(x, y, z) = a(x∨ z, y ∨ z) such
that b(x, y, 0) = a(x, y) and b(x, y, 1) = a(1, 1) and b(x, y, z) = b(y, x, z).

Remark 2: it looks like the Lemma is also valid for cubical sets with connections.

Remark 3: the Lemma should also be valid for de Morgan algebra cubes but where we replace the
symmetric square by the symmetric line L containing a line l(x) = l(1− x): this line L is not equivalent
to 1.

Remark 4: it follows from this result that the fibrant replacement of Q is not contractible. It is
possible to describe the fibrant replacement of Q→ R(Q) in a direct combinatorial way. It follows from
the argument that we dont have any homotopy Q × I → R(Q) which connects the generic symmetric
square q(x, y) to a constant square. But though this is a purely combinatorial result, it is not easy to
see directly why it holds.
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