Trivial cofibration-fibration factorization with one application

Introduction

This note contains two results.
We first describe a trivial cofibration-fibration factorisation of a map between cubical set as an inductive definition (for cartesian cubical sets). Using this decomposition, and the results in Section 2 of [1], it is then possible to define a a model structure (the type-theoretic model structure) on cartesian cubical sets. The fibrant objects for this model structure form a model of dependent type theory with univalence, and this is most directly seen using internal language of a presheaf model.

We also have a canonical notion of geometric realization of a cubical set, where the formal interval \mathbb{I} is interpreted by the unit interval $[0,1]$, and it is natural to ask if this geoemtric realization defines an equivalence of Quillen model structure. The second part of this note describes a negative result of Christian Sattler. Our presentation uses the explicit description of the trivial cofibration-fibration given in the first part. If we define Q to be the generic symmetric square, then the geometric realization of Q should be like a triangle, and so should be contractible. We explain however (following Sattler) that the canonical map $Q \rightarrow 1$ cannot be an equivalence for the type-theoretic model structure.

1 Notations

The objects of the base category I, J, K, \ldots are finite set of names (disjoint from 0,1) written x, y, z, \ldots We supposed that we have a fresh name function on names and write I^{+}the set I where we have added a fresh name. A map $f: J \rightarrow I$ is a set theoretic function $f: I \rightarrow J \cup\{0,1\}$. We have a projection map $\mathrm{p}: J^{+} \rightarrow J$ which corresponds to the inclusion $J \rightarrow J \cup\{0,1\}$.

If $f: J \rightarrow I$ we define in a functorial way $f^{+}: J^{+} \rightarrow I^{+}$.
The formal interval is defined by $\mathbb{I}(J)=J \cup\{0,1\}$.
We let $\Omega(J)$ to be the set of decidable sieves on I.
If k is in $\mathbb{I}(J)$ we have a map $[k]: J \rightarrow J^{+}$which sends the fresh name to k. We have $\mathrm{p}[k]=1_{J}$.
A square in a cubical set can be written as an object $a(x, y)$ which depends of two names x and y. The edges of this square are then $a(0,0), a(0,1), a(1,0)$ and $a(1,1)$ and the diagonal (in the direction of name z) is $a(z, z)$.

2 Fibrations

Given a cubical set B, a "dependent presheaf E over B is given by a presheaf on the category of elements of B. It is thus given by a family of sets $E(v)$ for v in $B(I)$ with restriction maps $u \mapsto u f, E(v) \rightarrow E(v f)$ for $f: J \rightarrow I$. We can then define the total space $\Sigma B E$ and the projection map $\Sigma B E \rightarrow B$.

We express when this projection map is a fibration.
We first present the definition using freely the internal language of presheaf models. In this language we see E as a dependent family $E(v)$ for $v: B$. We also have a family of subsingletons $[\psi]=\{\mathrm{tt} \mid \psi\}$ for $\psi: \Omega$. We define E to be a fibration iff there is an operation f_{E} which given $\gamma: B^{\mathbb{I}}$ and $k: \mathbb{I}$ and a partial section

$$
v: \Pi(i: \mathbb{I})[\psi \vee i=k] \rightarrow E \gamma(i)
$$

builds a total section $f_{E} v: \Pi(i: \mathbb{I}) E \gamma(i)$ such that $f_{E} v$ extends v, i.e. $\psi \vee i=k \Rightarrow f_{E} v i=v i$ tt.
This expresses the right lifting property w.r.t. generating trivial cofibrations, with an explicit lifting operation.

A simpler notion, which is equivalent, is to have a composition operation. Given $\gamma: B^{\mathbb{I}}$ and $k, l: \mathbb{I}$ and a partial section

$$
v: \Pi(i: \mathbb{I})[\psi \vee i=k] \rightarrow E \gamma(i)
$$

the operation $c_{E}^{k \rightarrow l} v$ builds an element in $E \gamma(l)$ such that $\psi \Rightarrow c_{E}^{k \rightarrow l} v=v l$ tt and $c_{E}^{k \rightarrow k} v=v k \mathrm{tt}$.
Given a composition operation c_{E} we can define a filling operation $f_{E} v=\lambda(i: \mathbb{I}) c_{E}^{k \rightarrow i} v$.
Let us unfold these definitions in the presheaf model.
Given v in $B\left(J^{+}\right)$(this corresponds to γ) and k in $\mathbb{I}(J)$ and u_{k} in $E(v[k])$ and ψ in $\Omega(J)$ and a family of elements u_{f} in $E(v f)$ for $f: K \rightarrow J^{+}$satisfying $\psi \mathrm{p} f=1$ and such that $u_{f} g=u_{f g}$ if $g: L \rightarrow K$ and $u_{[k] g}=u_{k} g$, for $g: K \rightarrow J$ such that $\psi g=1$, we should find a filling, that is an element $f_{E} u_{k}(\psi, u)$ in $E(v)$ such that $\left(f_{E} u_{k}(\psi, u)\right)[k]=u_{k}$ and $\left(f_{E} u_{k}(\psi, u)\right) f=u_{f}$ whenever $\psi \mathbf{p} f=1$. Furthermore $\left(f_{E} u_{k}(\psi, u)\right) g^{+}=f_{E} u_{k} g\left(\psi g, u g^{+}\right)$if $\psi g \neq 1$. The pair $u_{k},(\psi, u)$ corresponds to the partial section in the internal definition.

The composition operation, under the same hypotheses, and given another element $l \neq k$ in $\mathbb{I}(J)$, is required to find an element $\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u\right)=u_{l}$ in $E(v[l])$ such that $u_{l} g=u_{[l] g}$ if $g: K \rightarrow J$ satisfies $\psi g=1$ and $u_{l} g=u_{k} g$ if $k g=l g$. (Note that we have $u_{k} g=u_{[k] g}=u_{[l] g}=u_{l} g$ if both conditions $\psi g=1$ and $k g=l g$ hold.) Furthermore $\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u\right) g=\operatorname{comp}^{k g \rightarrow k l}\left(u_{k} g, \psi g, u g^{+}\right)$if $k g \neq l g$ and $\psi g \neq 1$.

For the trivial cofibration-fibration factorization, one intuition is that we "force" a map $\sigma: A \rightarrow B$ to become a fibration by adding in a "free" way (with constructor) a composition operation.

3 Trivial cofibration-fibration factorization

Let $\sigma: A \rightarrow B$ be a map of cubical sets. We explain how to build a trivial cofibration-fibration factorization of this map.

We first define a family of sets $F(v)$ for v in $B(J)$ together with maps $F(v) \rightarrow F(v f)$ for $f: J \rightarrow I$.
(This will be an upper approximation of a dependent type E over B and the desired factorization will be of the form $A \rightarrow \Sigma B E \rightarrow B$.)

This is defined inductively:

- inc a in $F(\sigma a)$ if a is in $A(I)$
- comp ${ }^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)$ in $F(v[l])$ if u_{k} in $F(v[k])$ and $k \neq l$ in $\mathbb{I}(J)$ and v in $B\left(J^{+}\right)$and $\psi \neq 1$ in $\Omega(J)$ and u is a family of elements u_{f} in $F(v f)$ for $f: K \rightarrow J^{+}$such that $\psi p f=1$.

We then define, for $g: L \rightarrow J$ and w in $B(J)$ and u in $E(w)$ an element $u g$ in $E(w g)$:

- (inc $a) g=\operatorname{inc}(a g)$
- $\left(\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=\operatorname{comp}^{k g \rightarrow l g}\left(u_{k} g, \psi g, u g^{+}, v g^{+}\right)$if $k g \neq l g$ and $\psi g \neq 1$ where $\left(u g^{+}\right)_{h}=$ $u_{g^{+} h}$ if $g: K \rightarrow J$ and $h: L \rightarrow K^{+}$
- $\left(\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=u_{k} g$ if $k g=l g$
- $\left(\right.$ comp $\left.^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=u_{[l] g}$ if $\psi g=1$

Note that the two last cases may happen at the same time: we can have $k g=l g$ and $\psi g=1$ but we fix then the result to be $u_{k} g$.

We define now inductively a subset $E(v)$ of $F(v)$

- inc a is in $E(\sigma a)$
- comp $^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)$ is in $E(v[l])$ provided u_{k} is in $E(v[k])$ and u_{f} is in $E(v f)$ for $f: K \rightarrow J^{+}$such that $\psi p f=1$ and $u_{[k] g}=u_{k} g$ if $g: K \rightarrow J$ such that $\psi g=1$ and $u_{f} g=u_{f g}$ if $g: L \rightarrow K$.

It can then be checked that if u is in $E(v)$ and $g: K \rightarrow J$ then $u g$ is in $E(v g)$ and we have $(u g) h=u(g h)$ in $E(v g h)$ if $h: L \rightarrow K$.

In this way, we define a fibrant type family E over B, of total space T, and we have a factorization $A \rightarrow T, a \mapsto(\sigma a, \operatorname{inc} a)$ and $T \rightarrow B,(v, u) \mapsto v$ of the given map $\sigma: A \rightarrow B$.

It is possible to check that $A \rightarrow T$ has the left lifting property w.r.t. any fibration.
It would actually be possible to take the direct definition of E as primitive. (This is what we did in our cubical type theory paper.) One would define directly $E(v)$ by the clauses:

- inc a in $E(\sigma a)$ if a is in $A(I)$
- $\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)$ in $E(v[l])$ if u_{k} in $E(v[k])$ and $k \neq l$ in $\mathbb{I}(J)$ and v in $B\left(J^{+}\right)$and $\psi \neq 1$ in $\Omega(J)$ and u is a family of elements u_{f} in $F(v f)$ for $f: K \rightarrow J^{+}$such that $\psi p f=1$, with the conditions $u_{k} g=u_{[k] g}$ and $u_{f} g=u_{f g}$ if $g: L \rightarrow K$
and at the same time
- (inc $a) g=\operatorname{inc}(a g)$
- $\left(\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=\operatorname{comp}^{k g \rightarrow l g}\left(u_{k} g, \psi g, u g^{+}, v g^{+}\right)$if $k g \neq l g$ and $\psi g \neq 1$ where $\left(u g^{+}\right)_{h}=$ $u_{g^{+} h}$ if $g: K \rightarrow J$ and $h: L \rightarrow K^{+}$
- $\left(\right.$ comp $\left.^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=u_{k} g$ if $k g=l g$
- $\left(\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \psi, u, v\right)\right) g=u_{[l] g}$ if $\psi g=1$

Note that there is no ambiguity in the last two cases, since we have $u_{k} g=u_{[k] g}=u_{[l] g}$ if $k g=l g$ and $\psi g=1$.

This definition looks similar to an inductive-recursive definition: we define at the same time the sets $E(v)$ and the restriction maps $E(v) \rightarrow E(v g)$.

4 A property of cubical sets

We say that a cube $c(x, y, z)$ connects a square $a(x, y)$ to a square $b(x, y)$ if we have $c(x, y, 0)=a(x, y)$ and $c(x, y, 1)=b(x, y)$ or $c(x, y, 1)=a(x, y)$ and $c(x, y, 0)=b(x, y)$. (This defines a homotopy between a and b.)

We consider the following property of cubical sets, written $P(A)$: if we have a square $a(x, y)$ in $A(x, y)$ such that $a(x, y)=a(y, x)$ then we can find a sequence of cubes $c_{k}(x, y, z)$ which connects $a(x, y)$ to a constant square in a symmetric way, i.e. $c_{k}(x, y, z)=c_{k}(y, x, z)$ for all k.

Lemma 4.1 If $u: A \rightarrow B$ has a section then $P(A)$ implies $P(B)$.
Proof. If v is a section of u and $b(x, y)=b(y, x)$ is a symmetric square in $B(x, y)$ then $v b$ is a symmetric square in $A(x, y)$ and we have a sequence of homotopies in A which can be mapped by u.

Proposition 4.2 If $\sigma: A \rightarrow B$ is an equivalence then $P(A)$ implies $P(B)$.
Proof. σ being an equivalence means by definition that if we consider a trivial cofibration-fibration factorisation $A \rightarrow T \rightarrow B$ of σ then the fibration $T \rightarrow B$ is a trivial fibration.

We Have given above a concrete description of T and the map $A \rightarrow T$ where T is described as a total space of a dependent family $B \vdash E$.
$E(v)$ is defined inductively as follows: an element of $E(v)$ for v in $E(J)$ is either

- inc a, a in $A(J)$ in $E(\sigma a)$
- $\operatorname{comp}^{k \rightarrow l}\left(u_{k}, \varphi, u, v\right)$ in $E(v[l])$ with $k \neq l$ in $\mathbb{I}(J)$ with u_{k} in $E(v[k])$ and $\varphi \neq 1$ in $\Omega(J)$ and u partial element of extent φ (the exact definition will not matter here) and v in $E\left(J^{+}\right)$

We prove that we always have $P(A)$ implies $P(T)$ (even if σ is not an equivalence).
Indeed a symmetric square in T is

- either of the form (σa, inc a) where a is a symmetric square in A, and we can conclude using $P(A)$
- or of the form $\left(v(x, y, l), \operatorname{comp}^{k \rightarrow l}(a, \varphi, u,\langle z\rangle v(x, y, z))\right)$ with $k \neq l$ in $\mathbb{I}(x, y)$. This is symmetric in x, y so we should have $(k, l)=(0,1)$ or $(1,0)$ and $a(x, y)=a(y, x)$ and $v(x, y, z)=$ $v(y, x, z)$. This square is then homotopic to $(v(x, y, k), a)$ by a cube symmetric in x, y, namely $\left(v(x, y, t)\right.$, comp $\left.^{k \rightarrow t}(a, \varphi, u,\langle z\rangle v(x, y, z))\right)$ and we can conclude by induction. (We write z the fresh name for x, y and it is bound by the operation comp.)

So we have $P(A)$ implies $P(T)$.
Note that the homotopy can go from 0 to 1 (if $k=0$) or from 1 to 0 (if $k=1$) and we work with non necessarily fibrant cubical sets.

If now $T \rightarrow B$ is a trivial fibration, then it has a (strict) section and we conclude by the previous Lemma.

5 Application

Let now Q be the quotient of $\operatorname{Yon}(x, y)$ by swapping x and y. Concretely Q can be seen as a nominal set with only one primitive symmetric square $q(x, y)$.

The set $Q()$ has 3 elements $q(0,0), q(1,1)$ and $q(1,0)=q(0,1)$.
The set $Q(x)$ contains $Q()$ and has also for elements $q(0, x)=q(x, 0), q(1, x)=q(x, 1), q(x, x)$.
In general the set $Q(J)$ has for elements $q(i, j)=q(j, i)$ where i and j vary over 0,1 and the elements of J.

If $Q \rightarrow 1$ is an equivalence, then, by 3 out of 2 , any global point $1 \rightarrow Q$ (for instance $q(0,0)$) is also an equivalence. Since we trivially have $P(1)$, we should also have $P(Q)$ by the Proposition.

But any cube $b(x, y, z)$ in Q such that $b(x, y, 0)=q(x, y)$ has to be $b(x, y, z)=q(x, y)$ and so it is constant in z and so we cannot have $P(Q)$.

So $Q \rightarrow 1$ is not a weak equivalence.
Remark 1: if we have connections we have $P(Q)$ since we can define $b(x, y, z)=a(x \vee z, y \vee z)$ such that $b(x, y, 0)=a(x, y)$ and $b(x, y, 1)=a(1,1)$ and $b(x, y, z)=b(y, x, z)$.

Remark 2: it looks like the Lemma is also valid for cubical sets with connections.
Remark 3: the Lemma should also be valid for de Morgan algebra cubes but where we replace the symmetric square by the symmetric line L containing a line $l(x)=l(1-x)$: this line L is not equivalent to 1 .

Remark 4: it follows from this result that the fibrant replacement of Q is not contractible. It is possible to describe the fibrant replacement of $Q \rightarrow R(Q)$ in a direct combinatorial way. It follows from the argument that we dont have any homotopy $Q \times \mathbb{I} \rightarrow R(Q)$ which connects the generic symmetric square $q(x, y)$ to a constant square. But though this is a purely combinatorial result, it is not easy to see directly why it holds.

References

[1] Ch. Sattler. The equivalence extension property and model structures https://arxiv.org/pdf/1704.06911

