The mechanism described here is still experimental. Although it could be implemented in MkIV it is only available in LMTX. Already early in MkII we had a positioning mechanism available. At that time we had dvi output and specials were used to track positions. A script calculated the positions that were then fed back into the second run. Later Taco wrote dvipos which sped up the analysis. When $p d f T_{E} X$ evolved, an equivalent positioning mechanism was added there. In MkIV positioning support was optimized as part of the upgrading process a bit but the principles remained the same. The mechanism discussed here works differently and is more local which has pros and cons: it saves a second pass but it only works in a boxed ConT ${ }_{\mathrm{E}} \mathrm{Xt}$ (or course one can unbox a vertical box in the main stream). Performance wise there is probably not much difference (if one discards the initial extra run).
There is not that much to tell about it and examples demonstrate best what can be done with it.
\framed [synchronize=yes,align=normal] \{\% test test test $1 \quad$ Isync\{one\}\{1\}test test $2 \quad$ |crlf
test $1 \quad$ \sync\{one\}\{1\}test $2 \quad$ Crlf
test test test test $1 \backslash$ sync\{one\}\{1\} test test $2{ }_{2}^{22}$
\}

Here we see four anchors being used. The one is just a namespace and the number is a column number.

There are not really columns in the tabular sense but the anchor points perform the same duty as cell separators in a table.

one one	two	three
one one	two two three	
one	two	three
one one one two	three	

The \sync command gets a column number but will automatically increment a

| withcolor "red" ; |
| :---: | :---: |
| drawdot anchorxy("two", 0, 1) |
| withpen pencircle scaled 1mm |
| withcolor "red" ; |
| drawdot anchorxy("two", 0, 2) |
| withpen pencircle scaled 1mm |
| withcolor "red"; |
| drawdot anchorxy("three", 0, 1) |
| withpen pencircle scaled 1mm |
| withcolor "red" ; |

```
    foo bar rab oof \crlf
    oof rab bar foo\crlf
    oof rab \markanchor \(\{\) two \(\}\{0\}\{2\}\{\backslash\) red \(\backslash\) bf bar \(\} \%\)
    Imarkanchor\{one\}\{0\}\{2\} foo\%
    \markanchor\{three\}\{0\}\{1\}\%
    \}
This definition is a bit unreadable because it has to fit on the page, but here is
what we get:
foo.bar rab oof \(\square\)
foo bar rab oof
oof rab bar foo
oof rabsban foo
All the above trickery can be combined:
    \(\backslash\) framed
        [synchronize=yes,
        align=normal,
        offset=10pt,
        frame=off,
        background \(=\{\) whatever-1,foreground,whatever-2\}]
    \{\%
        one one one \syncanchor \(\{a\}\{1\}\{1\}\) two two two
        \syncanchor \(\{a\}\{2\}\{1\}\) three three \(\backslash\) par
        one \(\backslash\) syncanchor \(\{a\}\{1\}\{2\}\) two
        \syncanchor \(\{a\}\{2\}\{2\}\) three \(\backslash\) par
        one \(\backslash\) syncanchor \(\{a\}\{1\}\{3\}\) two
        \syncanchor\{a\}\{2\}\{3\}three\par
    \blank
    \(\backslash\) markanchor \(\{\) two \(\}\{0\}\{1\}\{\backslash\) red \(\backslash\) bf foo \(\} \%\)
    \(\backslash\) markanchor \(\{o n e\}\{0\}\{1\}\) bar rab oof \(\backslash c r l f\)
    foo bar rab oof \crlf
    oof rab bar foolcrlf
    oof rab \markanchor\{two\}\{0\}\{2\}\{\red\bf bar\}\%
    \markanchor\{one\}\{0\}\{2\} foo\%
    Imarkanchor\{three\}\{0\}\{1\}\%
    \blank
    one one \syncanchor \(\{a\}\{1\}\{4\}\) two two
                            \syncanchor \(\{a\}\{2\}\{4\}\) three \(\backslash\) par
    one one \(\backslash\) syncanchor \(\{a\}\{1\}\{5\}\) two two
        \syncanchor \(\{a\}\{2\}\{5\}\) three three\%
    \(\backslash\) markanchor \(\{\) three \(\}\{0\}\{1\} \%\)
    \}
This again not so readable example gives:
```


align vertically. The spacing related to the configured intermathobject spacing parameters:

$$
\begin{aligned}
& \quad a_{=}=b+c_{\Xi} \\
& b=c+d_{\Xi} \\
& -c=e+f_{m}
\end{aligned}
$$

But here also the italic correction can kick in. And of course the widths of the glyphs differ.

10
$a=b=c$

= $b_{\text {utic }}$

$c=e+f$
In the next examples we will align the operators:

\$a \syncanchor\{one\}\{1\}\{1\}=b \syncanchor\{one\} $\{2\}\{1\}+c \$ \backslash$ par
\$b \syncanchor\{one $\}\{1\}\{2\}=c$ ssyncanchor\{one $\}\{2\}\{2\}+\mathrm{d} \$$ par
\$c \syncanchor\{one\}\{1\}\{3\}=e \syncanchor\{one\}\{2\}\{3\}+ f\$\par \stopsynchronizing

This verbose version gives:

(1neme-13
-14
$a=b+c$
$b=c+d \quad-20$
$c=e+f \quad-2$
We can use less code:
\startsynchronizing
\$a \backslash sync\{one $\}\{1\}=\mathrm{b} \backslash$ sync\{one $\}\{2\}+c \$ \backslash p a r$
$\$ \mathrm{~b} \backslash$ sync $\{o n e\}\{1\}=\mathrm{c} \backslash$ sync $\{o n e\}\{2\}+\mathrm{d} \$$ par
\$c \sync\{one\}\{1\}=e \backslash sync $\{o n e\}\{2\}+\mathrm{f} \$$ par
\stopsynchronizing
and get:
$a=b+c$
$b=c+d \quad \underbrace{4}_{48}$
$c=e+f \quad$ -

But it's still not okay, because math spacing is kind of special:
\startsynchronizing
\$a \backslash mathsync\{1\} = b \backslash mathsync\{2\} $+\mathrm{c} \$ \backslash \mathrm{par}$
\$b \backslash mathsync\{1\} = c \backslash mathsync $\{2\}+\mathrm{d} \backslash$ par
\$ \backslash mordsync\{1\} $=\mathrm{e} \backslash$ mathsync\{2\} $+\mathrm{f} \$$ par

\stopsynchronizing	1
You can best run these examples in a test	3
$a=b+c$	5
$b=c+d$	6
$=e+f$	7
	8
With traced math kerning:	- 9
	-10
$a=b+c_{\#}$	- ${ }^{11}$
$b=c+d$	-12
- $=e+f^{\text {m }}$	- ${ }^{13}$
	-14
With traced math alignment correction:	-15
	-16
$a=b+c$	17
$b_{\text {min }} c_{\text {d }} d$	-18
$\underline{m}=e+f$	-19
	20
	21
	-22
	23
	-24
	-25
	-26
	-27
	-28
	-29
	-30
	-31
	32
	- 33
	34
	-35
	-36
	-37
	-38
	-39
	-40
	-41
	-42
	-43
	-44
	-45
	-46
	-47
	-48

