For $\theta^{-1}(\beta)$ we need to show that the following diagram is commutative

We have

$$
\begin{align*}
& \operatorname{res}_{U^{\prime}, U}^{\mathscr{F}} \circ \theta^{-1}(\beta)\left(U^{\prime}\right) \circ \lambda_{\mathscr{G}(V)}^{f^{-1} \text { grpe }\left(U^{\prime}\right)}=\operatorname{res}_{U^{\prime}, U^{\mathscr{F}}}^{\mathscr{F}} \circ \operatorname{res}_{f^{-1}(V), U^{\mathscr{T}}}^{\mathscr{F}} \circ \beta(V) \tag{by3.3.5}\\
& =\operatorname{res}_{f^{-1}(V), U}^{\mathscr{F}} \circ \beta(V) \\
& =\theta^{-1}(\beta)(U) \circ \lambda_{\mathscr{G}(V)}^{f^{-1 \text { cgre }}(U)} \tag{by3.3.5}\\
& =\theta^{-1}(\beta)(U) \circ \operatorname{res}_{U^{\prime}, U}^{f^{-1 \text { Igpre }}} \circ \lambda_{\mathscr{G}(V)}^{\left.f^{-1 \text { lgre }(} U^{\prime}\right)} \tag{by3.3.1}
\end{align*}
$$

By uniqueness, the above diagram is commutative. Now

$$
\begin{align*}
& \theta^{-1}(\theta(\alpha))(U) \circ \lambda_{\mathscr{G}(V)}^{f^{-1 / g p^{p e}}(U)}=\operatorname{res}_{f^{-1}(V), U}^{\mathscr{F}} \circ \theta(\alpha)(V) \tag{by3.3.5}\\
& =\operatorname{res}_{f^{-1}(V), U}^{\mathscr{T}} \circ \alpha\left(f^{-1}(V)\right) \circ \lambda_{\mathscr{G}(V)}^{\left.f^{-1} \underline{g}\right)}{ }^{\text {Pre }}\left(f^{-1}(V)\right) \tag{by3.3.4}
\end{align*}
$$

$$
\begin{align*}
& =\alpha(U) \circ \lambda_{\mathscr{G}_{(}(V)}^{f^{-1 \text { grre }}(U)} \tag{by3.3.1}
\end{align*}
$$

Therefore $\theta^{-1} \circ \theta=\operatorname{id}_{\operatorname{Mor}_{Y}\left(\mathscr{G}, f_{*} \mathscr{F}\right)}$. Also

$$
\begin{aligned}
\theta\left(\theta^{-1}(\beta)\right)(V) & =\theta^{-1}(\beta)\left(f^{-1}(V)\right) \circ \lambda_{\mathscr{G}(V)}^{f^{-1}\left(V \operatorname{rre}_{(}\left(f^{-1}(V)\right)\right.} \\
& =\operatorname{res}_{f^{-1}(V), f^{-1}(V)}^{\mathscr{F}} \circ \beta(V) \\
& =\beta(V)
\end{aligned}
$$

and therefore $\theta \circ \theta^{-1}=\operatorname{id}_{\text {Mor }_{X}\left(f^{-1} \mathscr{\varphi}, \mathscr{F}\right)}$.
Now we prove the final step. Let $\phi: \mathscr{F} \rightarrow \mathscr{F}^{\prime}$ and $\psi: \mathscr{G} \rightarrow \mathscr{G}^{\prime}$ be two morphism of sheaves. We have to show the following property (see 2.4.1)

$$
\theta\left(\phi \circ \alpha \circ f^{-1} \psi\right)=f_{*} \phi \circ \theta \alpha \circ \psi
$$

