Some elementary properties of Landau notations. Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$, as well as $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$, be sequences of complex numbers. Then:

$$
\begin{aligned}
& a_{n}=O(1) \text { and } u_{n}=O(1) \Rightarrow a_{n}+\lambda u_{n}=O(1) \\
& a_{n}=O(1) \text { and } u_{n}=O(1) \Rightarrow a_{n} u_{n}=O(1) \\
& a_{n}=o\left(u_{n}\right) \text { et } b_{n}=O\left(v_{n}\right) \Rightarrow a_{n} b_{n}=o\left(u_{n} v_{n}\right)
\end{aligned}
$$

Some elementary properties of Landau notations. Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$, as well as $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$, be sequences of complex numbers. Then:

$$
\begin{aligned}
& a_{n}=O(1) \text { and } u_{n}=O(1) \Rightarrow a_{n}+\lambda u_{n}=O(\$) \\
& a_{n}=O(1) \text { and } u_{n}=O(1) \Rightarrow a_{n} u_{n}=O(1) \\
& a_{n}=o\left(u_{n}\right) \text { et } b_{n}=O\left(v_{n}\right) \Rightarrow a_{n} b_{n}=o\left(u_{n} v_{n}(8)\right.
\end{aligned}
$$

