## Kaktovik-numerals

## Intro

On 18-04-2023 Haraban Ramm posted on the mailing-list about the Kaktovik numerals.

https://mathstodon.xyz/@johncarlosbaez/110215432175491555

The Inuit have a counting system based on the base 20. Back in 1994 in the local school at Kaktovik in Alaska students developed a counting system for the local language on the base 20. There is a subunit in the form of 5.

The counting system with base 20 is known in different cultures. e.g. The Mayans (Mexico) used a system with dots and horizontal bars. Even in modern languages there are traces of the base 20 counting system. e.g. French express 80 as 'quatre-vingt' and 90 as 'quatre-vingt-dix'...

## Hans Hagen's implementation

A couple of hours after Hraban's post, Hans came already up with an implementation of the Kaktovik-numeral-shapes in MetaFun.

meta-imp-kaktovik.mkxl

Further information on the Kaktovik-numerals-system

```
https://www.youtube.com/watch?v=EyS6FfczH0Q\&ab\_channel=Artifexian
```

```
\label{eq:https://www.youtube.com/watch?v=fIZB4bRwxqI\&ab_channel=Dave https://www.youtube.com/watch?v=ObRFHiU_r9I\&ab_channel=TheFerret
```

## The key to writing numbers in Kaktovik system

In order to understand how numbers are composed hereunder is the way in the decimal and in the Kaktovik system.

| Decimal         |                 |                 |                 | Kaktovik        |                 |                 |                 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 10 <sup>3</sup> | 10 <sup>2</sup> | 10 <sup>1</sup> | 10 <sup>0</sup> | 20 <sup>3</sup> | 20 <sup>2</sup> | 20 <sup>1</sup> | 20 <sup>0</sup> |
| 1               | 0               | 0               | 0               | 8               | 0               | 0               | 0               |

The following table shows the relation between the vertical bars (1 to 4) and the horizontal bars tuplets of 5



Examples

| 20   | $1 \times 20^1 + 0 \times 20^0$                  | \ Y        |
|------|--------------------------------------------------|------------|
| 30   | $1\times 20^1 + 10\times 20^0$                   | \ <b>-</b> |
| 40   | $2 \times 20^1 + 0 \times 20^0$                  | VY         |
| 100  | $5 \times 20^1 + 0 \times 20^0$                  | - r        |
| 1000 | $2 \times 20^2 + 10 \times 20^1 + 0 \times 20^0$ | V = r      |
| 2023 | $5 \times 20^2 + 0 \times 20^1 + 3 \times 20^0$  | - r 1 M    |

So the date of today would be:

19 - 4 - 2023

 $\overline{\mathfrak{W}} - W - \overline{\hspace{0.1in}} \, \mathbf{v} \setminus W$ 

Frappant is the possibility to solve arithmetic visually with these Kaktovik-numerals. The approach is to look how patterns fit in the left and right part of the equation. Decimal Kaktovik  $2 + 2 = 4 \rightarrow V + V = W$   $17 - 7 = 10 \rightarrow \sqrt[6]{V} - \sqrt[6]{V} = \frac{1}{1503/3}$  $364/3 \rightarrow \sqrt[6]{W} / W = \sqrt[6]{V}$  remainder V