/* * rlimits.c - resource limit builtins * * This file is part of zsh, the Z shell. * * Copyright (c) 1992-1997 Paul Falstad * All rights reserved. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and to distribute modified versions of this software for any * purpose, provided that the above copyright notice and the following * two paragraphs appear in all copies of this software. * * In no event shall Paul Falstad or the Zsh Development Group be liable * to any party for direct, indirect, special, incidental, or consequential * damages arising out of the use of this software and its documentation, * even if Paul Falstad and the Zsh Development Group have been advised of * the possibility of such damage. * * Paul Falstad and the Zsh Development Group specifically disclaim any * warranties, including, but not limited to, the implied warranties of * merchantability and fitness for a particular purpose. The software * provided hereunder is on an "as is" basis, and Paul Falstad and the * Zsh Development Group have no obligation to provide maintenance, * support, updates, enhancements, or modifications. * */ #include "rlimits.mdh" #include "rlimits.pro" #if defined(HAVE_GETRLIMIT) && defined(RLIM_INFINITY) enum zlimtype { ZLIMTYPE_MEMORY, ZLIMTYPE_NUMBER, ZLIMTYPE_TIME, ZLIMTYPE_MICROSECONDS, ZLIMTYPE_UNKNOWN }; typedef struct resinfo_T { int res; /* RLIMIT_XXX */ char* name; /* used by limit builtin */ enum zlimtype type; int unit; /* 1, 512, or 1024 */ char opt; /* option character */ char* descr; /* used by ulimit builtin */ } resinfo_T; /* table of known resources * * Not const since set_resinfo() may change some of the letters to 'N' in case * of collisions. However, all access should be through the "resinfo" global, * which exposes this as a const array. */ static resinfo_T known_resources[] = { {RLIMIT_CPU, "cputime", ZLIMTYPE_TIME, 1, 't', "cpu time (seconds)"}, {RLIMIT_FSIZE, "filesize", ZLIMTYPE_MEMORY, 512, 'f', "file size (blocks)"}, {RLIMIT_DATA, "datasize", ZLIMTYPE_MEMORY, 1024, 'd', "data seg size (kbytes)"}, {RLIMIT_STACK, "stacksize", ZLIMTYPE_MEMORY, 1024, 's', "stack size (kbytes)"}, {RLIMIT_CORE, "coredumpsize", ZLIMTYPE_MEMORY, 512, 'c', "core file size (blocks)"}, # ifdef HAVE_RLIMIT_NOFILE {RLIMIT_NOFILE, "descriptors", ZLIMTYPE_NUMBER, 1, 'n', "file descriptors"}, # endif # if defined(HAVE_RLIMIT_AS) && !defined(RLIMIT_VMEM_IS_AS) {RLIMIT_AS, "addressspace", ZLIMTYPE_MEMORY, 1024, 'v', "address space (kbytes)"}, # endif # if defined(HAVE_RLIMIT_RSS) && !defined(RLIMIT_VMEM_IS_RSS) && !defined(RLIMIT_RSS_IS_AS) {RLIMIT_RSS, "resident", ZLIMTYPE_MEMORY, 1024, 'm', "resident set size (kbytes)"}, # endif # if defined(HAVE_RLIMIT_VMEM) {RLIMIT_VMEM, # if defined(RLIMIT_VMEM_IS_RSS) "resident", ZLIMTYPE_MEMORY, 1024, 'm', "memory size (kbytes)" # else "vmemorysize", ZLIMTYPE_MEMORY, 1024, 'v', "virtual memory size (kbytes)" # endif }, # endif # ifdef HAVE_RLIMIT_NPROC {RLIMIT_NPROC, "maxproc", ZLIMTYPE_NUMBER, 1, 'u', "processes"}, # endif # ifdef HAVE_RLIMIT_MEMLOCK {RLIMIT_MEMLOCK, "memorylocked", ZLIMTYPE_MEMORY, 1024, 'l', "locked-in-memory size (kbytes)"}, # endif /* Linux */ # ifdef HAVE_RLIMIT_LOCKS {RLIMIT_LOCKS, "maxfilelocks", ZLIMTYPE_NUMBER, 1, 'x', "file locks"}, # endif # ifdef HAVE_RLIMIT_SIGPENDING {RLIMIT_SIGPENDING, "sigpending", ZLIMTYPE_NUMBER, 1, 'i', "pending signals"}, # endif # ifdef HAVE_RLIMIT_MSGQUEUE {RLIMIT_MSGQUEUE, "msgqueue", ZLIMTYPE_NUMBER, 1, 'q', "bytes in POSIX msg queues"}, # endif # ifdef HAVE_RLIMIT_NICE {RLIMIT_NICE, "nice", ZLIMTYPE_NUMBER, 1, 'e', "max nice"}, # endif # ifdef HAVE_RLIMIT_RTPRIO {RLIMIT_RTPRIO, "rt_priority", ZLIMTYPE_NUMBER, 1, 'r', "max rt priority"}, # endif # ifdef HAVE_RLIMIT_RTTIME {RLIMIT_RTTIME, "rt_time", ZLIMTYPE_MICROSECONDS, 1, 'N', "rt cpu time (microseconds)"}, # endif /* BSD */ # ifdef HAVE_RLIMIT_SBSIZE {RLIMIT_SBSIZE, "sockbufsize", ZLIMTYPE_MEMORY, 1, 'b', "socket buffer size (bytes)"}, # endif # ifdef HAVE_RLIMIT_KQUEUES /* FreeBSD */ {RLIMIT_KQUEUES, "kqueues", ZLIMTYPE_NUMBER, 1, 'k', "kqueues"}, # endif # ifdef HAVE_RLIMIT_NPTS /* FreeBSD */ {RLIMIT_NPTS, "pseudoterminals", ZLIMTYPE_NUMBER, 1, 'p', "pseudo-terminals"}, # endif # ifdef HAVE_RLIMIT_SWAP /* FreeBSD */ {RLIMIT_SWAP, "swapsize", ZLIMTYPE_MEMORY, 1024, 'w', "swap size (kbytes)"}, # endif # ifdef HAVE_RLIMIT_UMTXP /* FreeBSD */ {RLIMIT_UMTXP, "umtxp", ZLIMTYPE_NUMBER, 1, 'o', "umtx shared locks"}, # endif # ifdef HAVE_RLIMIT_POSIXLOCKS /* DragonFly */ {RLIMIT_POSIXLOCKS, "posixlocks", ZLIMTYPE_NUMBER, 1, 'x', "number of POSIX locks"}, # endif # if defined(HAVE_RLIMIT_NTHR) && !defined(HAVE_RLIMIT_RTPRIO) /* Net/OpenBSD */ {RLIMIT_NTHR, "maxpthreads", ZLIMTYPE_NUMBER, 1, 'r', "threads"}, # endif /* others */ # if defined(HAVE_RLIMIT_PTHREAD) && !defined(HAVE_RLIMIT_NTHR) /* IRIX ? */ {RLIMIT_PTHREAD, "maxpthreads", ZLIMTYPE_NUMBER, 1, 'T', "threads per process"}, # endif # ifdef HAVE_RLIMIT_AIO_MEM /* HP-UX ? */ {RLIMIT_AIO_MEM, "aiomemorylocked", ZLIMTYPE_MEMORY, 1024, 'N', "AIO locked-in-memory (kbytes)"}, # endif # ifdef HAVE_RLIMIT_AIO_OPS /* HP-UX ? */ {RLIMIT_AIO_OPS, "aiooperations", ZLIMTYPE_NUMBER, 1, 'N', "AIO operations"}, # endif # ifdef HAVE_RLIMIT_TCACHE /* HP-UX ? */ {RLIMIT_TCACHE, "cachedthreads", ZLIMTYPE_NUMBER, 1, 'N', "cached threads"}, # endif }; /* resinfo[RLIMIT_XXX] points to the corresponding entry * in known_resources[] */ static const resinfo_T **resinfo; /**/ static void set_resinfo(void) { int i; resinfo_T **resinfo_mutable; resinfo_mutable = (resinfo_T **)zshcalloc(RLIM_NLIMITS*sizeof(resinfo_T *)); for (i=0; ires = - 1; /* negative value indicates "unknown" */ info->name = buf; info->type = ZLIMTYPE_UNKNOWN; info->unit = 1; info->opt = 'N'; info->descr = buf; resinfo_mutable[i] = info; } } resinfo = (const resinfo_T **) resinfo_mutable; } /**/ static void free_resinfo(void) { int i; for (i=0; ires < 0) { /* unknown resource */ free(resinfo[i]->name); free((void*)resinfo[i]); } } free(resinfo); resinfo = NULL; } /* Find resource by its option character */ /**/ static int find_resource(char c) { int i; for (i=0; iopt == c) return i; } return -1; } /* Print a value of type rlim_t */ /**/ static void printrlim(rlim_t val, const char *unit) { # ifdef RLIM_T_IS_QUAD_T printf("%qd%s", val, unit); # else # ifdef RLIM_T_IS_LONG_LONG printf("%lld%s", val, unit); # else # ifdef RLIM_T_IS_UNSIGNED printf("%lu%s", (unsigned long)val, unit); # else printf("%ld%s", (long)val, unit); # endif /* RLIM_T_IS_UNSIGNED */ # endif /* RLIM_T_IS_LONG_LONG */ # endif /* RLIM_T_IS_QUAD_T */ } /**/ static rlim_t zstrtorlimt(const char *s, char **t, int base) { rlim_t ret = 0; if (strcmp(s, "unlimited") == 0) { if (t) *t = (char *) s + 9; return RLIM_INFINITY; } # if defined(RLIM_T_IS_QUAD_T) || defined(RLIM_T_IS_LONG_LONG) || defined(RLIM_T_IS_UNSIGNED) if (!base) { if (*s != '0') base = 10; else if (*++s == 'x' || *s == 'X') base = 16, s++; else base = 8; } if (base <= 10) for (; *s >= '0' && *s < ('0' + base); s++) ret = ret * base + *s - '0'; else for (; idigit(*s) || (*s >= 'a' && *s < ('a' + base - 10)) || (*s >= 'A' && *s < ('A' + base - 10)); s++) ret = ret * base + (idigit(*s) ? (*s - '0') : (*s & 0x1f) + 9); if (t) *t = (char *)s; # else /* !RLIM_T_IS_QUAD_T && !RLIM_T_IS_LONG_LONG && !RLIM_T_IS_UNSIGNED */ ret = zstrtol(s, t, base); # endif /* !RLIM_T_IS_QUAD_T && !RLIM_T_IS_LONG_LONG && !RLIM_T_IS_UNSIGNED */ return ret; } /**/ static void showlimitvalue(int lim, rlim_t val) { /* display limit for resource number lim */ if (lim < RLIM_NLIMITS) printf("%-16s", resinfo[lim]->name); else { /* Unknown limit, hence unknown units. */ printf("%-16d", lim); } if (val == RLIM_INFINITY) printf("unlimited\n"); else if (lim >= RLIM_NLIMITS) printrlim(val, "\n"); else if (resinfo[lim]->type == ZLIMTYPE_TIME) { /* time-type resource -- display as hours, minutes and seconds. */ printf("%d:%02d:%02d\n", (int)(val / 3600), (int)(val / 60) % 60, (int)(val % 60)); } else if (resinfo[lim]->type == ZLIMTYPE_MICROSECONDS) printrlim(val, "us\n"); /* microseconds */ else if (resinfo[lim]->type == ZLIMTYPE_NUMBER || resinfo[lim]->type == ZLIMTYPE_UNKNOWN) printrlim(val, "\n"); /* pure numeric resource */ else { /* memory resource -- display with `k' or `M' modifier */ if (val >= 1024L * 1024L) printrlim(val/(1024L * 1024L), "MB\n"); else printrlim(val/1024L, "kB\n"); } } /* Display resource limits. hard indicates whether `hard' or `soft' * * limits should be displayed. lim specifies the limit, or may be -1 * * to show all. */ /**/ static int showlimits(char *nam, int hard, int lim) { int rt; if (lim >= RLIM_NLIMITS) { /* * Not configured into the shell. Ask the OS * explicitly for this limit. */ struct rlimit vals; if (getrlimit(lim, &vals) < 0) { zwarnnam(nam, "can't read limit: %e", errno); return 1; } showlimitvalue(lim, hard ? vals.rlim_max : vals.rlim_cur); } else if (lim != -1) { showlimitvalue(lim, hard ? limits[lim].rlim_max : limits[lim].rlim_cur); } else { /* main loop over resource types */ for (rt = 0; rt != RLIM_NLIMITS; rt++) showlimitvalue(rt, (hard) ? limits[rt].rlim_max : limits[rt].rlim_cur); } return 0; } /* Display a resource limit, in ulimit style. lim specifies which * * limit should be displayed, and hard indicates whether the hard or * * soft limit should be displayed. */ /**/ static int printulimit(char *nam, int lim, int hard, int head) { rlim_t limit; /* get the limit in question */ if (lim >= RLIM_NLIMITS) { struct rlimit vals; if (getrlimit(lim, &vals) < 0) { zwarnnam(nam, "can't read limit: %e", errno); return 1; } limit = (hard) ? vals.rlim_max : vals.rlim_cur; } else limit = (hard) ? limits[lim].rlim_max : limits[lim].rlim_cur; /* display the appropriate heading */ if (head) { if (lim < RLIM_NLIMITS) { const resinfo_T *info = resinfo[lim]; if (info->opt == 'N') printf("-N %2d: %-29s", lim, info->descr); else printf("-%c: %-32s", info->opt, info->descr); } else printf("-N %2d: %-29s", lim, ""); } /* display the limit */ if (limit == RLIM_INFINITY) printf("unlimited\n"); else { if (lim < RLIM_NLIMITS) printrlim(limit/resinfo[lim]->unit, "\n"); else printrlim(limit, "\n"); } return 0; } /**/ static int do_limit(char *nam, int lim, rlim_t val, int hard, int soft, int set) { if (lim >= RLIM_NLIMITS) { struct rlimit vals; if (getrlimit(lim, &vals) < 0) { /* best guess about error */ zwarnnam(nam, "can't read limit: %e", errno); return 1; } if (hard) { if (val > vals.rlim_max && geteuid()) { zwarnnam(nam, "can't raise hard limits"); return 1; } vals.rlim_max = val; /* * not show if all systems will do this silently, but * best be safe... */ if (val < vals.rlim_cur) vals.rlim_cur = val; } if (soft || !hard) { if (val > vals.rlim_max) { zwarnnam(nam, "limit exceeds hard limit"); return 1; } else vals.rlim_cur = val; } if (!set) { zwarnnam(nam, "warning: unrecognised limit %d, use -s to set", lim); return 1; } else if (setrlimit(lim, &vals) < 0) { zwarnnam(nam, "setrlimit failed: %e", errno); return 1; } } else { /* new limit is valid and has been interpreted; apply it to the specified resource */ if (hard) { /* can only raise hard limits if running as root */ if (val > current_limits[lim].rlim_max && geteuid()) { zwarnnam(nam, "can't raise hard limits"); return 1; } else { limits[lim].rlim_max = val; if (val < limits[lim].rlim_cur) limits[lim].rlim_cur = val; } } if (soft || !hard) { if (val > limits[lim].rlim_max) { /* no idea about this difference, don't intend to worry */ if (*nam == 'u') { /* ulimit does this */ if (val > current_limits[lim].rlim_max && geteuid()) { zwarnnam(nam, "value exceeds hard limit"); return 1; } limits[lim].rlim_max = limits[lim].rlim_cur = val; } else { /* but limit does this */ zwarnnam(nam, "limit exceeds hard limit"); return 1; } } else limits[lim].rlim_cur = val; if (set && zsetlimit(lim, nam)) return 1; } } return 0; } /* limit: set or show resource limits. The variable hard indicates * * whether `hard' or `soft' resource limits are being set/shown. */ /**/ static int bin_limit(char *nam, char **argv, Options ops, UNUSED(int func)) { char *s; int hard, limnum, lim; rlim_t val; int ret = 0; hard = OPT_ISSET(ops,'h'); if (OPT_ISSET(ops,'s') && !*argv) return setlimits(NULL); /* without arguments, display limits */ if (!*argv) return showlimits(nam, hard, -1); while ((s = *argv++)) { /* Search for the appropriate resource name. When a name matches (i.e. * * starts with) the argument, the lim variable changes from -1 to the * * number of the resource. If another match is found, lim goes to -2. */ if (idigit(*s)) { lim = (int)zstrtol(s, NULL, 10); } else for (lim = -1, limnum = 0; limnum < RLIM_NLIMITS; limnum++) if (!strncmp(resinfo[limnum]->name, s, strlen(s))) { if (lim != -1) lim = -2; else lim = limnum; } /* lim==-1 indicates that no matches were found. * * lim==-2 indicates that multiple matches were found. */ if (lim < 0) { zwarnnam(nam, (lim == -2) ? "ambiguous resource specification: %s" : "no such resource: %s", s); return 1; } /* without value for limit, display the current limit */ if (!(s = *argv++)) return showlimits(nam, hard, lim); if (lim >= RLIM_NLIMITS) { val = zstrtorlimt(s, &s, 10); if (*s) { /* unknown limit, no idea how to scale */ zwarnnam(nam, "unknown scaling factor: %s", s); return 1; } } else if (resinfo[lim]->type == ZLIMTYPE_TIME) { /* time-type resource -- may be specified as seconds, or minutes or * * hours with the `m' and `h' modifiers, and `:' may be used to add * * together more than one of these. It's easier to understand from * * the code: */ val = zstrtorlimt(s, &s, 10); if (*s) { if ((*s == 'h' || *s == 'H') && !s[1]) val *= 3600L; else if ((*s == 'm' || *s == 'M') && !s[1]) val *= 60L; else if (*s == ':') val = val * 60 + zstrtorlimt(s + 1, &s, 10); else { zwarnnam(nam, "unknown scaling factor: %s", s); return 1; } } } else if (resinfo[lim]->type == ZLIMTYPE_NUMBER || resinfo[lim]->type == ZLIMTYPE_UNKNOWN || resinfo[lim]->type == ZLIMTYPE_MICROSECONDS) { /* pure numeric resource -- only a straight decimal number is permitted. */ char *t = s; val = zstrtorlimt(t, &s, 10); if (s == t) { zwarnnam(nam, "limit must be a number"); return 1; } } else { /* memory-type resource -- `k', `M' and `G' modifiers are * * permitted, meaning (respectively) 2^10, 2^20 and 2^30. */ val = zstrtorlimt(s, &s, 10); if (!*s || ((*s == 'k' || *s == 'K') && !s[1])) { if (val != RLIM_INFINITY) val *= 1024L; } else if ((*s == 'M' || *s == 'm') && !s[1]) val *= 1024L * 1024; else if ((*s == 'G' || *s == 'g') && !s[1]) val *= 1024L * 1024 * 1024; else { zwarnnam(nam, "unknown scaling factor: %s", s); return 1; } } if (do_limit(nam, lim, val, hard, !hard, OPT_ISSET(ops, 's'))) ret++; } return ret; } /**/ static int do_unlimit(char *nam, int lim, int hard, int soft, int set, int euid) { /* remove specified limit */ if (lim >= RLIM_NLIMITS) { struct rlimit vals; if (getrlimit(lim, &vals) < 0) { zwarnnam(nam, "can't read limit: %e", errno); return 1; } if (hard) { if (euid && vals.rlim_max != RLIM_INFINITY) { zwarnnam(nam, "can't remove hard limits"); return 1; } else vals.rlim_max = RLIM_INFINITY; } if (!hard || soft) vals.rlim_cur = vals.rlim_max; if (!set) { zwarnnam(nam, "warning: unrecognised limit %d, use -s to set", lim); return 1; } else if (setrlimit(lim, &vals) < 0) { zwarnnam(nam, "setrlimit failed: %e", errno); return 1; } } else { if (hard) { if (euid && current_limits[lim].rlim_max != RLIM_INFINITY) { zwarnnam(nam, "can't remove hard limits"); return 1; } else limits[lim].rlim_max = RLIM_INFINITY; } if (!hard || soft) limits[lim].rlim_cur = limits[lim].rlim_max; if (set && zsetlimit(lim, nam)) return 1; } return 0; } /* unlimit: remove resource limits. Much of this code is the same as * * that in bin_limit(). */ /**/ static int bin_unlimit(char *nam, char **argv, Options ops, UNUSED(int func)) { int hard, limnum, lim; int ret = 0; uid_t euid = geteuid(); hard = OPT_ISSET(ops,'h'); /* Without arguments, remove all limits. */ if (!*argv) { for (limnum = 0; limnum != RLIM_NLIMITS; limnum++) { if (hard) { if (euid && current_limits[limnum].rlim_max != RLIM_INFINITY) ret++; else limits[limnum].rlim_max = RLIM_INFINITY; } else limits[limnum].rlim_cur = limits[limnum].rlim_max; } if (OPT_ISSET(ops,'s')) ret += setlimits(nam); if (ret) zwarnnam(nam, "can't remove hard limits"); } else { for (; *argv; argv++) { /* Search for the appropriate resource name. When a name * * matches (i.e. starts with) the argument, the lim variable * * changes from -1 to the number of the resource. If another * * match is found, lim goes to -2. */ if (idigit(**argv)) { lim = (int)zstrtol(*argv, NULL, 10); } else { for (lim = -1, limnum = 0; limnum < RLIM_NLIMITS; limnum++) if (!strncmp(resinfo[limnum]->name, *argv, strlen(*argv))) { if (lim != -1) lim = -2; else lim = limnum; } } /* lim==-1 indicates that no matches were found. * * lim==-2 indicates that multiple matches were found. */ if (lim < 0) { zwarnnam(nam, (lim == -2) ? "ambiguous resource specification: %s" : "no such resource: %s", *argv); return 1; } else if (do_unlimit(nam, lim, hard, !hard, OPT_ISSET(ops, 's'), euid)) ret++; } } return ret; } /* ulimit: set or display resource limits */ /**/ static int bin_ulimit(char *name, char **argv, UNUSED(Options ops), UNUSED(int func)) { int res, resmask = 0, hard = 0, soft = 0, nres = 0, all = 0, ret = 0; char *options, *eptr, *number; do { options = *argv; if (options && *options == '-' && !options[1]) { zwarnnam(name, "missing option letter"); return 1; } res = -1; if (options && *options == '-') { argv++; while (*++options) { if(*options == Meta) *++options ^= 32; res = -1; switch (*options) { case 'H': hard = 1; continue; case 'S': soft = 1; continue; case 'N': if (options[1]) { number = options + 1; } else if (*argv) { number = *argv++; } else { zwarnnam(name, "number required after -N"); return 1; } res = (int)zstrtol(number, &eptr, 10); if (*eptr) { zwarnnam(name, "invalid number: %s", number); return 1; } /* * fake it so it looks like we just finished an option... */ while (options[1]) options++; break; case 'a': if (resmask) { zwarnnam(name, "no limits allowed with -a"); return 1; } all = 1; resmask = (1 << RLIM_NLIMITS) - 1; nres = RLIM_NLIMITS; continue; default: res = find_resource(*options); if (res < 0) { /* unrecognised limit */ zwarnnam(name, "bad option: -%c", *options); return 1; } break; } if (options[1]) { resmask |= 1 << res; nres++; } if (all && res != -1) { zwarnnam(name, "no limits allowed with -a"); return 1; } } } if (!*argv || **argv == '-') { if (res < 0) { if (*argv || nres) continue; else res = RLIMIT_FSIZE; } resmask |= 1 << res; nres++; continue; } if (all) { zwarnnam(name, "no arguments allowed after -a"); return 1; } if (res < 0) res = RLIMIT_FSIZE; if (strcmp(*argv, "unlimited")) { /* set limit to specified value */ rlim_t limit; if (!strcmp(*argv, "hard")) { struct rlimit vals; if (getrlimit(res, &vals) < 0) { zwarnnam(name, "can't read limit: %e", errno); return 1; } else { limit = vals.rlim_max; } } else { limit = zstrtorlimt(*argv, &eptr, 10); if (*eptr) { zwarnnam(name, "invalid number: %s", *argv); return 1; } /* scale appropriately */ if (res < RLIM_NLIMITS) limit *= resinfo[res]->unit; } if (do_limit(name, res, limit, hard, soft, 1)) ret++; } else { if (do_unlimit(name, res, hard, soft, 1, geteuid())) ret++; } argv++; } while (*argv); for (res = 0; resmask; res++, resmask >>= 1) if ((resmask & 1) && printulimit(name, res, hard, nres > 1)) ret++; return ret; } #else /* !HAVE_GETRLIMIT || !RLIM_INFINITY */ # define bin_limit bin_notavail # define bin_ulimit bin_notavail # define bin_unlimit bin_notavail #endif /* !HAVE_GETRLIMIT || !RLIM_INFINITY */ static struct builtin bintab[] = { BUILTIN("limit", 0, bin_limit, 0, -1, 0, "sh", NULL), BUILTIN("ulimit", 0, bin_ulimit, 0, -1, 0, NULL, NULL), BUILTIN("unlimit", 0, bin_unlimit, 0, -1, 0, "hs", NULL), }; static struct features module_features = { bintab, sizeof(bintab)/sizeof(*bintab), NULL, 0, NULL, 0, NULL, 0, 0 }; /**/ int setup_(UNUSED(Module m)) { return 0; } /**/ int features_(Module m, char ***features) { *features = featuresarray(m, &module_features); return 0; } /**/ int enables_(Module m, int **enables) { return handlefeatures(m, &module_features, enables); } /**/ int boot_(UNUSED(Module m)) { set_resinfo(); return 0; } /**/ int cleanup_(Module m) { free_resinfo(); return setfeatureenables(m, &module_features, NULL); } /**/ int finish_(UNUSED(Module m)) { return 0; }