```Discussion of Homotopy Type Theory and Univalent Foundations
help / color / mirror / Atom feed```
```From: Bas Spitters <b.a.w.spitters@gmail.com>
To: Anders Mortberg <andersmortberg@gmail.com>
Subject: Re: [HoTT] A unifying cartesian cubical type theory
Date: Fri, 15 Feb 2019 09:16:44 +0100	[thread overview]
Message-ID: <CAOoPQuR5YMkmeoFEVW2x5T-xSCZCr580VvjaRL7nz952-K0=3Q@mail.gmail.com> (raw)

Thanks. This looks very interesting.

Did you think about the corresponding model structure?
https://ncatlab.org/nlab/show/type-theoretic+model+structure

Because, we know that Cartesian cubical sets are not equivalent to
simplicial sets, but as far as I know, this is still unclear for the
DeMorgan cubical sets.
https://ncatlab.org/nlab/show/cubical+type+theory#models

On Thu, Feb 14, 2019 at 8:05 PM Anders Mortberg
<andersmortberg@gmail.com> wrote:
>
> Evan Cavallo and I have worked out a new cartesian cubical type theory
> that generalizes the existing work on cubical type theories and models
> based on a structural interval:
>
> http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf
>
> The main difference from earlier work on similar models is that it
> depends neither on diagonal cofibrations nor on connections or
> reversals. In the presence of these additional structures, our notion
> of fibration coincides with that of the existing cartesian and De
> Morgan cubical set models. This work can therefore be seen as a
> generalization of the existing models of univalent type theory which
> also clarifies the connection between them.
>
> The key idea is to weaken the notion of fibration from the cartesian
> Kan operations com^r->s so that they are not strictly the identity
> when r=s. Instead we introduce weak cartesian Kan operations that are
> only the identity function up to a path when r=s. Semantically this
> should correspond to a weaker form of a lifting condition where the
> lifting only satisfies some of the eqations up to homotopy. We verify
> in the note that this weaker notion of fibration is closed under the
> type formers of cubical type theory (nat, Sigma, Pi, Path, Id, Glue,
> U) so that we get a model of univalent type theory. We also verify
> that the circle works and we don't expect any substantial problems
> with extending it to more complicated HITs (like pushouts).
>
> --
> Anders and Evan
>
> --
> You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group.
> To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com.
> For more options, visit https://groups.google.com/d/optout.

--
You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group.
To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com.
```

```next prev parent reply	other threads:[~2019-02-15  8:16 UTC|newest]

Thread overview: 18+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2019-02-14 19:04 Anders Mortberg
2019-02-14 20:06 ` Andrew Pitts
2019-02-15 15:38   ` Anders Mörtberg
2019-02-15  8:16 ` Bas Spitters [this message]
2019-02-15 16:32   ` Anders Mörtberg
2019-02-16  0:01     ` Michael Shulman
2019-02-16  0:14       ` Steve Awodey
2019-02-16 12:30         ` streicher
2019-02-16 19:51           ` Thomas Streicher
2019-02-16 22:27             ` Steve Awodey
2019-02-17  9:43               ` Thomas Streicher
2019-02-17 14:14                 ` Licata, Dan
2019-02-16 21:58           ` Richard Williamson
2019-02-17  9:15             ` Thomas Streicher
2019-02-17 13:49               ` Richard Williamson
2019-02-18 14:05 ` [HoTT] " Andrew Swan
2019-02-18 15:31   ` Anders Mörtberg
2019-06-16 16:04     ` Anders Mörtberg
```

```Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,

Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

switches of git-send-email(1):

git send-email \
--to=b.a.w.spitters@gmail.com \
--cc=andersmortberg@gmail.com \
```This is a public inbox, see mirroring instructions