*[HoTT] On the Use of Computational Paths in Path Spaces of Homotopy Type Theory@ 2018-10-14 17:15 Ali Caglayan2018-10-14 19:05 ` Corlin Fardal 2018-10-30 2:02 ` [HoTT] Quantum Groups José Manuel Rodriguez Caballero 0 siblings, 2 replies; 4+ messages in thread From: Ali Caglayan @ 2018-10-14 17:15 UTC (permalink / raw) To: Homotopy Type Theory [-- Attachment #1.1: Type: text/plain, Size: 466 bytes --] I have seen these papers on the arXiv for a while now: https://arxiv.org/abs/1804.01413 https://arxiv.org/abs/1803.01709 Can anybody explain what they are about? -- You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group. To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com. For more options, visit https://groups.google.com/d/optout. [-- Attachment #1.2: Type: text/html, Size: 736 bytes --] ^ permalink raw reply [flat|nested] 4+ messages in thread

*[HoTT] On the Use of Computational Paths in Path Spaces of Homotopy Type Theory2018-10-14 17:15 [HoTT] On the Use of Computational Paths in Path Spaces of Homotopy Type Theory Ali Caglayan@ 2018-10-14 19:05 ` Corlin Fardal2018-10-30 2:02 ` [HoTT] Quantum Groups José Manuel Rodriguez Caballero 1 sibling, 0 replies; 4+ messages in thread From: Corlin Fardal @ 2018-10-14 19:05 UTC (permalink / raw) To: Homotopy Type Theory [-- Attachment #1: Type: text/plain, Size: 542 bytes --] From vaugely skimming through it, it looks like they define a more explicit version of judgmental equality, from which they found an extensional type theory, and proceed to calculate the fundamental group of different spaces in that theory. -- You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group. To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com. For more options, visit https://groups.google.com/d/optout. ^ permalink raw reply [flat|nested] 4+ messages in thread

*[HoTT] Quantum Groups2018-10-14 17:15 [HoTT] On the Use of Computational Paths in Path Spaces of Homotopy Type Theory Ali Caglayan 2018-10-14 19:05 ` Corlin Fardal@ 2018-10-30 2:02 ` José Manuel Rodriguez Caballero2018-10-30 3:21 ` Michael Shulman 1 sibling, 1 reply; 4+ messages in thread From: José Manuel Rodriguez Caballero @ 2018-10-30 2:02 UTC (permalink / raw) To: HomotopyTypeTheory [-- Attachment #1: Type: text/plain, Size: 1076 bytes --] Hello, Roughly speaking, a quantum group is an algebraic structure which is obtained by means of a deformation of a group. There rigorous definition is here: https://ncatlab.org/nlab/show/quantum+group Official reference to quantum groups: Kassel, Christian (1995), Quantum groups, Graduate Texts in Mathematics, 155, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0783-2, ISBN 978-0-387-94370-1, MR 1321145 Deformations... homotopy type... Well, given a "well-behaved" family of quantum groups, which are deformations of the same group, is it "natural" to define this family as a homotopy type? Is HoTT, in some way, a natural setting to work with quantum groups because types and homotopy types are identified? Kind Regards, José M. -- You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group. To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com. For more options, visit https://groups.google.com/d/optout. [-- Attachment #2: Type: text/html, Size: 1773 bytes --] ^ permalink raw reply [flat|nested] 4+ messages in thread

*2018-10-30 2:02 ` [HoTT] Quantum Groups José Manuel Rodriguez CaballeroRe: [HoTT] Quantum Groups@ 2018-10-30 3:21 ` Michael Shulman0 siblings, 0 replies; 4+ messages in thread From: Michael Shulman @ 2018-10-30 3:21 UTC (permalink / raw) To: josephcmac;+Cc:HomotopyTypeTheory I doubt it. My understanding of quantum groups is that they are supposed to be groups with "noncommutative underlying spaces", and the homotopy types of HoTT are all "commutative" in this sense. On Mon, Oct 29, 2018 at 7:02 PM José Manuel Rodriguez Caballero <josephcmac@gmail.com> wrote: > > Hello, > Roughly speaking, a quantum group is an algebraic structure which is obtained by means of a deformation of a group. There rigorous definition is here: https://ncatlab.org/nlab/show/quantum+group > > Official reference to quantum groups: Kassel, Christian (1995), Quantum groups, Graduate Texts in Mathematics, 155, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0783-2, ISBN 978-0-387-94370-1, MR 1321145 > > Deformations... homotopy type... Well, given a "well-behaved" family of quantum groups, which are deformations of the same group, is it "natural" to define this family as a homotopy type? Is HoTT, in some way, a natural setting to work with quantum groups because types and homotopy types are identified? > > Kind Regards, > José M. > > > -- > You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group. > To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com. > For more options, visit https://groups.google.com/d/optout. -- You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group. To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com. For more options, visit https://groups.google.com/d/optout. ^ permalink raw reply [flat|nested] 4+ messages in thread

end of thread, other threads:[~2018-10-30 3:21 UTC | newest]Thread overview:4+ messages (download: mbox.gz / follow: Atom feed) -- links below jump to the message on this page -- 2018-10-14 17:15 [HoTT] On the Use of Computational Paths in Path Spaces of Homotopy Type Theory Ali Caglayan 2018-10-14 19:05 ` Corlin Fardal 2018-10-30 2:02 ` [HoTT] Quantum Groups José Manuel Rodriguez Caballero 2018-10-30 3:21 ` Michael Shulman

This is a public inbox, see mirroring instructions for how to clone and mirror all data and code used for this inbox; as well as URLs for NNTP newsgroup(s).