Discussion of Homotopy Type Theory and Univalent Foundations
 help / Atom feed
* [HoTT] Are cubical sets hypercomplete?
@ 2019-06-11 17:02 Michael Shulman
  0 siblings, 0 replies; 1+ messages in thread
From: Michael Shulman @ 2019-06-11 17:02 UTC (permalink / raw)
  To: HomotopyTypeTheory

I have always assumed that cubical set models, like the simplicial set
model, satisfy Whitehead's principle (one form of which is the
statement that if all n-truncations of a type are contractible, then
it is contractible).  However, since cubical set models aren't known
to have an underlying model structure that's equivalent to simplicial
sets (and, as discussed previously on this list, at least one model
structure for cubical sets is known to be *not* equivalent to
simplicial sets), it's not completely obvious to me how to prove this.
Has anyone checked carefully that one or more cubical set models
satisfy Whitehead's principle -- and in particular, is the argument
fully constructive?  I could imagine that it might require something
like countable choice.

You received this message because you are subscribed to the Google Groups "Homotopy Type Theory" group.
To unsubscribe from this group and stop receiving emails from it, send an email to HomotopyTypeTheory+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/HomotopyTypeTheory/CAOvivQyPJsVzRtJw7uWX%3DLJH0-3r7TarVm%3DCSaqfoFU4k7foqw%40mail.gmail.com.
For more options, visit https://groups.google.com/d/optout.

^ permalink raw reply	[flat|nested] 1+ messages in thread

only message in thread, back to index

Thread overview: (only message) (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2019-06-11 17:02 [HoTT] Are cubical sets hypercomplete? Michael Shulman

Discussion of Homotopy Type Theory and Univalent Foundations

Archives are clonable: git clone --mirror http://inbox.vuxu.org/hott

Newsgroup available over NNTP:

AGPL code for this site: git clone https://public-inbox.org/ public-inbox